Доведення 1.
0=0
10−10=15−15
10−6−4=15−9−6
2(5−3−2)=3(5−3−2)
скорочуємо одинакові множники
2=3
2+2=3+2
2+2=5
Доведення 2.
1=1
4
4
=
5
5
4·
1
1
=5·
1
1
оскільки
1
1
=
1
1
, то 4=5
А звідси 2+2=5
Доведення 3.
−20=−20
16−36=25−45
16−36+20.25=25−45+20.25
(4−4.5)2=(5−4.5)2
4−4.5=5−4.5
4=5
2+2=5
Доведення 4.
a=b
ab=b2
ab−a2=b2−a2
a(b−a)=(b+a)(b−a)
a=b+a, оскільки b=a, то
a=a+a
a=2a
1=2
звідси очевидним чином випливає, що
1=2 ⇒ 1+3=2+3 ⇒ 4=5 ⇒ 2+2=5
Доведення 5 (для тих хто вчив вищу математику).
Візьмемо інтеграл частинами згідно формул інтегрування частинами:
∫
1
x
dx=[\tableu=
1
x
;du=−
1
x2
dx;dv=dx;v=x]=
1
x
x−∫−
1
x2
xdx=1+∫
1
x
dx
Нехай ∫
1
x
dx=θ, тоді
θ=1+θ
0=1 ⇒ 0+4=1+4 ⇒ 4=5 ⇒ 2+2=5
√(22/3) √ (17/2) √ (8/3) √(19/5)
например вот так
возведем их в квадрат
(22/3) (17/2) (8/3) (19/5)
приводим к наименьшему общему знаменателю (30)
220/30 255/30 80/30 57/30
и располагаем в порядке возрастания
57/30 80/30 220/30 255/30 ⇒255/30 =17/2 ⇒√(17/2 ) -наибольшее.
или так...
возведем их в квадрат и выделим целую часть
(22/3)=7+1/3 (17/2)=8+1/2 (8/3)=2+2/3 (19/5)=3+4/5 ⇒
(17/2)=8+1/2 - наибольшее среди (22/3), (17/2), (8/3), (19/5),
⇒√ (17/2) - наибольшее среди √(22/3), √ (17/2), √(8/3) , √(19/5).