Если осевое сечение конуса - равносторонний треугольник, то в конусе половина образующей равна радиусу основания. Проведем осевое сечение и получившийся треугольник обозначим ABC, где A - вершина конуса. Опустим высоту AH - которая явл. так же медианой и биссектрисой.
BH обозначим r - радиус окружности в основании конуса.
BA тогда будет 2r
Из прямоугольного треугольника ABH:
AH² = BA² - BH²
AH² = 4r² - r²
AH² = 3r²
AH = r√3
Объем конуса V = πr²h/3 (где r - радиус основания, а h - высота)
V = πBH²AH²/3 = πr²r√3/3 = πr³√3/3
Но V так же равно 36.
πr³√3/3 = 36
r³ = 36√3/π
r = ∛(36√3/π)
Вычислим радиус вписанного шара - R
Осевое сечение шара является вписанной окружностью для треугольника в осевом сечении конуса. R этой окружности и R шара - одинаковы.
Так как треугольник ABC равносторонний R = a√3/6 (а - сторона треугольника)
Сторона треугольника - 2r = 2∛(36√3/π)
R = ∛(36√3/π)*√3/6
Vшар = 4πR³/3
Vшар = 4π(∛(36√3/π)*√3/6)³/3 = (4π(36√3/π)*3√3/36*6)/3 = 4*36√3*3√3/36*6*3 = 4/2 = 2
ответ: 2
1) 3x² = 0 ⇒ х = 0
2) 9x² = 81 ⇒ х² = 9 ⇒ х₁= -3 и х₂ = 3
3) x² - 27 = 0 ⇒ х² = 27 ⇒ х = ⁺₋ √27 ⇒ х = ⁺₋ 3√3
4) 0.01x² = 4 ⇒ х² = 400 ⇒ х₁= -20 и х₂ = 20
2. Решить уравнения
1) x² + 5x = 0
х(х + 5) = 0
х₁ = 0 или х₂ = -5
2) 4x² = 0.16x
4x² - 0.16x = 0
4х (х - 0,04) = 0
х₁ = 0 или х₂ = 0,04
3) 9x² + 1 = 0
9x² = - 1 - НЕТ решения (корень из отрицательного числа НЕ существует)
3. Решить уравнения
1) 4x² - 169 = 0
4x² = 169
х² =
х₁ = -6,5 или х₂ = 6,5
2) 25 - 16x² = 0
16х² = 25
х₁ = -1,25 или х₂ = 1,25
3) 2x² - 16 = 0
2х² = 16
х² = 8
х₁ = -2√2 или х₂ = 2√2
4) 3x² = 15
х² = 5
х₁ = -√5 или х₂ = √5
5) 2x² =
х² =
х₁ = -0,25 или х₂ = 0,25
6) 3x² =
3х² =
х² =
х₁ = -1