Решаем в м и сек.
10 мин. = 600 сек. Вверх по реке - это против течения.
Скорость первого катера против течения:
9 - 1 = 8 м/с, а второго 7- 1 = 6 м/с.
Пусть весь путь равен S, тогда S/6 - S/8 = 600
4S/24 - 3S/24 = 600;
S/24 = 600;
S = 600 · 24 = 14400 метров
Вниз по течению скорость первого катера:
9 + 1 = 10 м/с.
Он проплыл 14400 метров за 14400/10 = 1440 сек
Скорость второго по течению 7 + 1 = 8 м/с.
Он проплыл 14400м за 14400/8 = 1800 сек
1800 - 1440 = 360 сек = 360/60 = 6 минут
ответ: на 6 минут
___ Вроде бы так, если не ошибаюсь.
ответ: 0
Объяснение:
Здравствуйте!
Попробуем составить рекуррентное соотношение для чисел раскрасок.
Пусть для доски
имеем
правильных раскрасок с четным числом закрашенных клеток и
правильных раскрасок с нечетным числом закрашенный клеток, для доски
Добавим к предыдущей доске, поверх
-й снизу строки,
-ю строку. Вставим в нее одну из правильных раскрасок доски
. У нас есть 3 варианта как мы можем закрашивать квадратики в новой строке.
Закрашиваем левую клетку, закрашиваем правую клетку или вообще не закрашиваем. Необходимо понимать, что если мы закрашиваем левую клетку в
-й строке, то в
-й строке закрашен правый квадратик, либо вообще ничего не закрашено и наоборот.
Пусть мы не закрасили в верхней строке ни одного квадрата, в этом случае общее число четных раскрасок :
=
, а нечетных : 
(Будем считать, что пустая раскраска входит в число четных)
Пусть мы закрасили левый квадрат в
-й строке, в этом случае либо правый квадрат
-й строки закрашен, либо вообще ничего не закрашено. То есть из всех вариантов
или
нужно вычесть те, в которых левая клетка окрашена. Из симметрии очевидно, что числа вариантов с левой и правой окрашенной клетками равны.
Чтобы найти число всех вариантов с окрашенной левой или правой клеткой, нужно из общего числа вариантов вычесть варианты с незакрашенными клетками.
Очевидно, что число таких вариантов равно :
или 
Учитывая, что с добавлением одной закрашенной клетки четность меняется, то имеем:
с закрашенным в
-й строке левым(индекс 2) и правым (индекс 3) квадратом.
Аналогично:
Таким образом :
Найдем :
Когда
, число вариантов с нечетным числом клеток равно
(левый и правый квадрат закрашены) . С четным же числом клеток такая комбинация только одна
, когда ни одна клетка не закрашена (0 клеток, 0 делится на 2). 
Когда
, число вариантов с нечетным числом клеток равно
(все варианты закрасить одну клетку, поскольку 3 клетки всегда будут вплотную) . С четным числом клеток имеем
таких комбинаций ( две комбинации с двумя клетками по диагонали и одна комбинация с незакрашенными клетками). 
Из полученного выше свойства имеем:
И так далее, то есть
Таким образом, сумма возможных значений
равна:
Если вам понравилось решение, ставь лайк и отметь его лучшим.