М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
irakon63
irakon63
03.03.2021 06:01 •  Алгебра

Найти общее решение или общий интеграл дифференциального уравнения.
Решить задачу Коши.


Найти общее решение или общий интеграл дифференциального уравнения. Решить задачу Коши.

👇
Ответ:
6lackk
6lackk
03.03.2021

(3x^2-y^2)\cdot y'=2xy\ \ ,\ \ \ y(0)=1y'=\dfrac{2xy}{3x^2-y^2}\ \ \ odnorodnoe\ ,\ \ \ \displaystyle u=\frac{y}{x}\ \ ,\ \ y=ux\ \ ,\ \ y'=u'x+u\ \ ,\ \ x\ne 0u'x+u=\frac{2x\cdot ux}{3x^2-u^2x^2}=\frac{2u}{3-u^2}\ \ ,\ \ \ u'x=\frac{2u}{3-u^2}-u=\frac{2u-3u+u^3}{3-u^2}u'x=\frac{u^3-u}{3-u^2} \ \ ,\ \ \ u'=\frac{u^3-u}{x\, (3-u^2)}\ \ ,\ \ \ \frac{du}{dx}=\frac{u^3-u}{3-u^2}\ \ ,

\displaystyle \int \frac{(3-u^2)\, du}{u(u-1)(u+1)}=\int \frac{dx}{x}int \frac{(3-u^2)\, du}{u(u-1)(u+1)}=\int \frac{-3\, du}{u}+\int \frac{du}{u-1}+\int \frac{du}{u+1}==-3ln|u|+ln|u-1|+ln|u+1|+lnC^*=ln\frac{C^*|u+1|\cdot |u-1|}{|u|^3}=ln\frac{C^*|u^2-1|}{|u|^3}ln\frac{C|u^2-1|}{|u|^3}=ln|x|\ \ ,\ \ \ \ C\Big(\, \frac{y^2}{x^2}-1\Big)=x\cdot \frac{y^3}{x^3}

C\Big(\, \dfrac{y^2}{x^2}-1\Big)=\dfrac{y^3}{x^2}\ \ ,\ \ \ C\Big(\, \dfrac{y^2-x^2}{x^2}\, \Big)=\dfrac{y^3}{x^2}\ \ ,\ \ \ \underline{\ C\, (\, y^2-x^2)=y^3\ ,\ x\ne 0\ }

Так как получили решение при х≠0 , то найти частное решение при у(0)=1 невозможно .

Например, если бы задали  у(1)=2, то

y(1)=2:\ \ C\codt (4-1)=8\ \ ,\ \ 3C=8\ \ ,\ \ C=\dfrac{8}{3}\ \ \Rightarrow y_{chastnoe}=\dfrac{8}{3}\cdot (y^2-x^2)=y^3

4,4(91 оценок)
Открыть все ответы
Ответ:
aksu4
aksu4
03.03.2021
1) y=sin x, y=cos x, x=-5π/4, x=π/4.
Заданный отрезок графиками функций разбивается на 2 участка: левая часть - от заданного предела x=-5π/4 до точки встречи графиков, где график функции синуса выше графика косинуса.
Направо от этой точки график синуса выше графика косинуса.
Это определяет площадь как сумма интегралов разностей функций.
Точка встречи - это значение (-π+(π/4)) = -3π/4.
S= \int\limits^{- \frac{3 \pi }{4} }_{- \frac{5 \pi }{4} } {(sin(x)-cos(x))} \, dx + \int\limits^{- \frac{ \pi }{4} }_{- \frac{3 \pi }{4} } {(cos(x)-sin(x))} \, dx.
Значения аргумента в заданных пределах:
-1.25π =  -3.92699,
-0.75π =  -2.35619,
 0.25π =  0.785398.
Значения функции синуса в заданных пределах:
0.707107,    -0.70711,   0.707107. (это +-√2/2)
Значения функции косинуса в заданных пределах:
-0.70711,    -0.70711,    0.707107.  (это +-√2/2)
Значения функции косинуса в заданных пределах:
Площадь равна  1.414214 + 2.828427 = 4.242641 = 3√2.

2) y=-x^2-2x+4, y=-x^2+4x+1, y=5.
Заданный отрезок графиками функций разбивается на 2 участка, граничные точки которых надо определить.
Средняя точка - равенство функций y=-x^2-2x+4, y=-x^2+4x+1.
-x^2 - 2x + 4 = -x^2 + 4x + 1,
6х = 3,
х = 3/6 = 1/2.
Левая точка - равенство y=-x^2-2x+4, y=5
-x^2 - 2x + 4 = 5.
-x^2 - 2x -1 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)^2-4*(-1)*(-1)=4-4*(-1)*(-1)=4-(-4)*(-1)=4-(-4*(-1))=4-(-(-4))=4-4=0; Дискриминант равен 0, уравнение имеет 1 корень:
x=-(-2/(2*(-1)))=-(-2/(-2))=-(-(-2/2))=-(-(-1))=-1. 
Правая точка - равенство y=-x^2+4x+1, y=5.
-x^2 + 4x + 1 = 5.
-x^2 + 4x - 4 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=4^2-4*(-1)*(-4)=16-4*(-1)*(-4)=16-(-4)*(-4)=16-(-4*(-4))=16-(-(-4*4))=16-(-(-16))=16-16=0; Дискриминант равен 0, уравнение имеет 1 корень:
x=-4/(2*(-1))=-4/(-2)=-(-4/2)=-(-2)=2. Линия у = 5 находится выше парабол.
Площадь равна:
S= \int\limits^{ \frac{1}{2} }_{-1} {(x^2+2x+1)} \, dx + \int\limits^2_{ \frac{1}{2} } {(x^2-4x+4)} \, dx = \frac{x^3}{3}+ \frac{2x^2}{2}+x|_{-1}^{ \frac{1}{2} }+ \frac{x^3}{3}- \frac{4x^2}{2}+4x|_{ \frac{1}{2} }^2= \frac{9}{4}=2,25.
4,8(64 оценок)
Ответ:
shik03082001
shik03082001
03.03.2021
5х^2-11х-5-7х^2
-2х^2-11х-5<0 |*(-1)
2х^2+11х+5>0
Решаем как квадратное уравнение:
D=121-40=81
X=-11+-9/4
x1=-5
x2=-1/2
Раскладываем на множители
(х+5)*(х+1/2)>0
Решаем через метод интервалов:
Чертим координатную прямую и выставляем на неё нули уравнения, то есть -5,-1/2:
(-5)(-1/2)>
Точки выколотые, так как знак > строгий и эти точки в ответы не будут
Начинаем определять знаки каждого интервала, начиная с крайнего правого, а именно:
х>-1/2
Берём число больше -1/2, например ноль
И подставляем значение в (х+5)(х+1/2)>0
Вычислять значение необязательно, главное понять какой в итоге знак будет
В первой скобке получается положительный и во второй тоже положительный
++=+, значит интервал положительный
По аналогии делаем с интервалами:
-5<х<-1/2---> получается отрицательным
х<-5---> получается положительным
Теперь координатная прямая выглядит вот так:
(-5)(-1/2)>
+ - +
Нас интересуют значения больше нуля, так как знак >
Значит в ответе будут только да положительных интервала (-~;-5);(-1/2;+~)
Простите за дурацкую координатную прямую
~ это бесконечность, пишется как перевёрнутая восьмёрка, на телефоне просто нет
Надеюсь, всё понятно:)
4,6(52 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ