смотри последние цифры: 9 * 1^n + 2 * 1^n = 9 + 2 = 1 таким образом, ответ заканчивается на 1, значит это либо А, либо Д.
ответ А и Д по длинне одинаковый, но если предположить что ответ А верный, то он должен быть на 1 знак длиннее (так как при сложении 9 и 2 будет 11).
Вывод - правильный ответ Д
тут мне подсказали, что в задании, мол, ошибка и там 20 единиц везде. тогда, конечно, ответ А, но решается задача легко и без калькулятора: выносим за скобки все 20-ть единиц, будет 1111111 * (9 * 111...111 + 2) = 111...111 * (999...999 + 2) = 111...111 * (1000...001) = 11111...1111
Он не ответил на 1 вопрос - появилось 2. Не ответил на 2 - появилось 4. Не ответил на 4 - появилось 8. Не ответил на 8 - появилось 16. Не ответил на 16 - появилось 32. Он не ответил на 1+2+4+8+16=31 вопрос. Если бы он не ответил на последние 32, то появилось бы 64, и тогда не могло остаться 50. Из 32 он ответил на 20 и не ответил на 12. 20 вопросов стали зелеными, и появилось ещё 24. Из этих 24 он опять ответил на 20 и не ответил на 4. Стало 40 зелёных и появилось ещё 8 вопросов. Из 8 он ответил на 6 и не ответил на 2. Стало 46 зелёных и появилось ещё 4 вопроса. На них он ответил, и стало 50 зелёных. Всё! Всего он не ответил на 31+12+4+2=49 вопросов.
смотри последние цифры: 9 * 1^n + 2 * 1^n = 9 + 2 = 1
таким образом, ответ заканчивается на 1, значит это либо А, либо Д.
ответ А и Д по длинне одинаковый, но если предположить что ответ А верный, то он должен быть на 1 знак длиннее (так как при сложении 9 и 2 будет 11).
Вывод - правильный ответ Д
тут мне подсказали, что в задании, мол, ошибка и там 20 единиц везде.
тогда, конечно, ответ А, но решается задача легко и без калькулятора:
выносим за скобки все 20-ть единиц, будет 1111111 * (9 * 111...111 + 2) =
111...111 * (999...999 + 2) = 111...111 * (1000...001) = 11111...1111