Объяснение:
а) х² - 8х = 0, х·(х -8) = 0 ⇒ х =0 или х - 8 = 0; х =0 или х = 8.
б. 6х² = 12; х² = 12÷6, х² = 2, х = ±√2
в) 3x² – 48 = 0, 3x²= 48, x² = 48÷3,x² = 16, х = ± 4
г) 6x² – 5x + 1 = 0;D = b²- 4ac = 25 - 4·6 = 24; x = -b ±√D/2a
x1 = 5+√1/12 = 5+1/12 = 6/12 = 1/2, x2 = 5-1/12 = 4/12 = 1/3
д) x² –16x + 71 = 0.D = b²- 4ac =256 - 4·1·71= 256 -284 =-28 - меньше 0 ⇒∅
е) (4x – 3)2 + (3х – 1)(3х+1) = 9
8х -6 +(9х²-3х+3х-1)=9; 8х -6+(9х²-1) =9; 8х -6 +9х²-1-9 = 0; 9х²+8х-16 =0
D = b²- 4ac = 64+4·9·16= 64+576 =640
х1 = -8+√640/18/= -8+8√10/18; х2 = -8-8√10/18
2*.При яких значеннях а рівняння аx² + аХ + 36 = 0 має один корінь?
D = 0⇒ а²-4·а·36 = 0, а²-144 = 0, а²=144, а = ±12
D(y)=(∞;5)∪(5;∞)
ДВА промежутка - от минус бесконечности до 5, и от 5 до плюс бесконечности
Объяснение:
ОБЛАСТЬ ОПРЕДЕЛЕНИЯ - это те числа которые просто могут быть решением этого уравнения.
Ну, например, если 4 / 0 (четыре РАЗДЕЛИТЬ на ноль).. этого же НЕЛЬЗЯ делать, значит надо ИСКЛЮЧИТЬ такую возможность в этой дроби.
Вот и ВСЁ.
Вот, когда в нижней части может быть НОЛЬ ?
Да когда мы ПРИРАВНЯЕМ нижнее уравнение к этому самому нулю, и узнаем чего же не должно быть.
|x+1|-6 = 0
И теперь решаем, чего же НЕ ДОЛЖНО случиться.
То есть в модульных скобках ДОЛЖНА получиться ШЕСТЁРКА 6-6=0
|x+1| = 6
Это 5 (пять + 1 = 6)
x+1-6 = 0 ; х=6-1; х=5
Проверяем:
у = 4/|5+1|-6; у=4/ 6-6 ; не может такого быть, на НОЛЬ делить нельзя, то есть НЕ МОЖЕТ быть областью определения.
D(y)=(∞;5)∪(5;∞)
D(y) - это ОБЛАСТЬ определения
∪ - заменяет слово "объеденяет"
думаю правильный ответ