Відповідь:
Еще недавно, учась сложению чисел, мы складывали кучки из монет. Тогда перед нами стояла задачи сложить две кучки. Но допустим, мы хотим теперь сложить не две, а несколько кучек. Это можно было бы сделать так: сгребаем их все сразу в одну большую кучу и пересчитываем в ней все монеты. Такой сложения всем бы был хорош, да только ни на счетах, ни на бумаге нельзя сделать ничего подобного. На счетах и бумаге мы умеем складывать между собой только два числа. Поэтому мы не будем сгребать вместе сразу все кучки, а поступим так, чтобы все наши действия можно было легко перенести на бумагу.
Итак, перед нами несколько кучек из монет. Мы знаем, сколько монет в каждой кучке, и теперь мы хотим узнать, сколько же у нас всего монет во всех кучках. Мы берем любые две кучки и сдвигаем их вместе, образуя одну новую кучку побольше. Умея складывать два числа на бумаге, мы сможем легко вычислить, сколько у нас монет в новой кучке без фактического их пересчета. Теперь у нас стало на одну кучку меньше. Далее, берем еще две кучки, сливаем их воедино, вычисляем новое число монет в только что образованной кучке и, таким образом, снова уменьшаем количество кучек на одну. Мы повторяем и повторяем эту процедуру, уменьшая всякий раз число кучек на единицу, до тех пор пока у нас не останется одна-единственная большая куча. Число монет в этой куче нам известно, причем вычислили мы его на бумаге, а не прямым пересчетом.
Очевидно, мы получим один и тот же ответ, совершенно независимо от того, в каком порядке мы сдвигали кучки. А значит, когда перед нами находится сумма чисел, например,
8 + 9 + 2, мы можем вычислять ее тоже в любом порядке. Поэтому мы всегда будем выбирать такой порядок, какой для нас наиболее удобен. В данном случае удобно вначале сложить восьмерку и двойку, а потом добавить девятку:
8 + 2 + 9 = 10 + 9 = 19.
Уравнение НОК (х², y) + НОК (х, у²) = 1996 не имеет решения в натуральных числах.
Объяснение:
x, y - взаимно простые числа (НОД (x,y)=1, x≠y)
x,y∈ N
НОК (x², y)=x²y
НОК (x, y²)=xy²
НОК (x², y) + НОК (x, y²) = 1996
x²y+xy²=1996
xy(x+y)=2²·499
xy(x+y)=1·4·499⇒ x=1, y=4, x+y ≠ 499
или
xy(x+y)=1·499·4⇒ x=1, y=499, x+y≠4
или
xy(x+y)=4·1·499⇒ x=4, y=1, x+y ≠499
или
xy(x+y)=4·499· 1⇒ x=4, y=499, x+y ≠1
или
xy(x+y)=499·1·4⇒ x=499, y=1, x+y ≠4
или
xy(x+y)=499·4·1⇒ x=499, y=4, x+y ≠1
Уравнение не имеет решения в натуральных числах.
x, y – не взаимно простые числа
x,y∈ N
НОД (x,y)=k
x=km
y=kn
k,m,n∈N
НОК (x², y)= НОК (k²m², kn )=k²m²n
НОК (х, у²)= НОК (km, k²n²)= k²mn²
НОК (x², y) + НОК (x, y²) = 1996
k²m²n+ k²mn²=1996
k² mn(m + n)= 2²·499
k²=2² ⇒ k=2
mn(m + n)=499
499 - простое число
Уравнение не имеет решения в натуральных числах.