Выпишем простые числа от 11 до 37: 11, 13, 17, 19, 23, 29, 31, 37 Количество дробей, у которых числитель и знаменатель являются различными числами (дробь не равна 1) равно 8*7=56. Наименьшая такая дробь равна 11/37, наибольшая 37/11. Пусть в дроби x/y фиксирован числитель и равен x=a. Тогда чтобы эта дробь была больше 1/2, Знаменатель должен быть больше, чем 2a. Тогда рассмотрим каждое из чисел в качестве числителя. 1) a = 11, тогда y > 22 - из выписанных чисел таких 4 штуки. Поэтому получилось 4 дроби с числителем 11 2) a = 13, тогда y > 26 - 3 штуки 3) a = 17 => y > 34 - 1 штука 4) a = 19 => y > 38 - 0 штук Очевидно, что дальше будет так же по 0 штук. Суммируем полученные количества для каждого a и получаем 4+3+1=8 дробей, которые меньше 1/2 и у которых числитель и знаменатель составлены из перечисленных простых чисел.
1 y=x² 1)x=2 y=4 2)x=-3/4 y=9/16 2 1)x²=9 x1=-3 U x2=3 (-3;9);(3;9) 2)x²=-x x²+x=0 x(x+1)=0 x1=0⇒y1=0 x2=-1⇒y2=1 (0;0);(-1;1) 3 y=x²,вершина в точке (0;0)-точка минимума у=0-наименьшее у(-4)=16 наибольшее (3)=9 х -4 -3 -2 -1 0 1 2 3 у 16 9 4 1 0 1 4 9 по этим точкам строишь график 4 1)х²=х Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=х по точкам (0;0) и (1;1) ответ (0;0);(1;1) 2)Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=2х-1 по точкам (0;-1) и (1;1) ответ (1;1) 5 y1=x² и у2=6х-5 Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=6х-5 по точкам (0;-5) и (1;1) ответ (5;0)4(1;1)
n=-3,2
Объяснение:
-6*n=19,2
-6n=19,2
n=19,2:(-6)
n=-3,2