1) Разложим числа на простые множители. Для этого проверим, является ли каждое из чисел простым (если число простое, то его нельзя разложить на простые множители, и оно само является своим разложением)
36 - составное число
24 - составное число
Разложим число 36 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
36 : 2 = 18 - делится на простое число 2
18 : 2 = 9 - делится на простое число 2
9 : 3 = 3 - делится на простое число 3.
Завершаем деление, так как 3 простое число
Разложим число 24 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
24 : 2 = 12 - делится на простое число 2
12 : 2 = 6 - делится на простое число 2
6 : 2 = 3 - делится на простое число 2.
Завершаем деление, так как 3 простое число
2) Выделим синим цветом и выпишем общие множители
36 = 2 ⋅ 2 ⋅ 3 ⋅ 3
24 = 2 ⋅ 2 ⋅ 2 ⋅ 3
Общие множители (36 ; 24) : 2, 2, 3
3) Теперь, чтобы найти НОД нужно перемножить общие множители
ответ: НОД (36 ; 24) = 2 ∙ 2 ∙ 3 = 12
№2
1) Найдем все возможные делители чисел (36 ; 24). Для этого поочередно разделим число 36 на делители от 1 до 36, число 24 на делители от 1 до 24. Если число делится без остатка, то делитель запишем в список делителей.
Для числа 36 выпишем все случаи, когда оно делится без остатка:
36 : 1 = 36;36 : 2 = 18;36 : 3 = 12;36 : 4 = 9;36 : 6 = 6;36 : 9 = 4;36 : 12 = 3;36 : 18 = 2;36 : 36 = 1;
Для числа 24 выпишем все случаи, когда оно делится без остатка:
24 : 1 = 24;24 : 2 = 12;24 : 3 = 8;24 : 4 = 6;24 : 6 = 4;24 : 8 = 3;24 : 12 = 2;24 : 24 = 1;
2) Выпишем все общие делители чисел (36 ; 24) и выделим зеленым цветом самы большой, это и будет наибольший общий делитель НОД чисел (36 ; 24)
Общие делители чисел (36 ; 24): 1, 2, 3, 4, 6, 12
ответ: НОД (36 ; 24) = 12
В решении.
Объяснение:
Дана функция у=√х
а) Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
у=√х
1) А(63; 3√7)
3√7 = √63
3√7 = √9*7
3√7 = 3√7, проходит.
2) В(49; -7)
-7 = ±√49
-7 = -7, проходит.
3) С(0,09; 0,3)
0,3 = √0,09
0,3 = 0,3, проходит.
б) х ∈ [0; 25]
y=√0 = 0;
y=√25 = 5;
При х ∈ [0; 25] у ∈ [0; 5].
в) у ∈ [9; 17]
у = √х
9=√х х=9² х=81;
17=√х х=17² х=289.
При х ∈ [81; 289] у ∈ [9; 17].
Пусть х рублей стоит один карандаш, а у рублей — одна ручка.
Тогда (4х + 3у) рублей стоят 4 карандаша и 3 ручки, что составляет 70 рублей. Значит, можно записать, что 4х + 3у = 70.
(2х + у) рублей заплатили за 2 карандаша и 1 ручку, что составляет 28 рублей. Следовательно, 2х + у = 28.
Решим систему уравнений:
2х + у = 28,
4х + 3у = 70;
у = 28 - 2х,
4х + 3 * (28 - 2х) = 70;
у = 28 - 2х,
4х + 84 - 6х = 70;
у = 28 - 2х,
4х + 84 - 6х = 70;
у = 28 - 2х,
-2х = 70 - 84;
у = 28 - 2х,
-2х = -14;
у = 28 - 2х,
х = -14 : (-2);
у = 28 - 2х,
х = 7.
ответ: один карандаш стоит 7 рублей.
2 и 37
НОК: 74
НОД: нет
3 и 15
НОК: 15
НОД: 3
12 и 14
НОК: 84
НОД: 2
3 и 71
НОК: 71
НОД: 3
10 и 28
НОК: 140
НОД: 2