x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
ответ: a ∈ (-1/40; 0)∪(0; +∞)∪{-2}.
Пошаговое объяснение: Рассмотрим отдельно случай, когда а = 0. Имеем следующее уравнение: -2x = 10, имеющее единственный корень. Данное значение а нам не подходит.
Пусть а = -2. Имеем следующее уравнение:
0x² - (0+2)x +10 - 10 = 0; 10 = 10 ⇒ x - любое число. Корней бесконечно много, поэтому это значение параметра нам подходит.
Если а ≠ 0, то уравнение - квадратное и имеет больше одного корня, если его дискриминант D > 0.
Найдем дискриминант:
D = (-(a+2))² - 4a(2a + 4)(-5a - 10) = a² + 4a + 4 + 4a(2a + 4)(5a
+ 10) = a²+ 4a + 4 + 4a(10a² + 20a + 20a + 40) = a² + 4a + 4 + 40a³ + 160a² + 160a = 40a³ + 161a² + 164a + 4 > 0.
40a³ + 161a² + 164a + 4 > 0
40a³ + a² + 160a² + 4a + 160a + 4 > 0
a²(40a + 1 ) + 4a(40a + 1) + 4(40a + 1) > 0
(40a + 1)(a² + 4a + 4)>0
(40a + 1)(a + 2)²> 0
40a+ 1 > 0 ⇒ a > -1/40.
Не забываем про a = -2 и а = 0, записываем ответ: a ∈ (-1/40; 0)∪(0; +∞)∪{-2}.