Объяснение:
1.
a) ОДЗ: x²-9≠0 (x+3)(x-3)≠0 x₁≠-3 x₂≠3.
б)
x²-2x-15≠0 D=64 √D=8
x₁≠-3 x₂≠5.
x²+8x+15≠0 D=4 √D=2
x₃≠-5 x₄≠-3. ⇒
ОДЗ: x₁≠-5 x₂≠-3 x₃≠5.
2.
a) (x²+4)/(x-1)=5x/(x-1) ОДЗ: x-1≠0 x≠1
x²+4=5x
x²-5x+4=0 D=9 √D=3
x₁=1 ∉ОДЗ х₂=4
ответ: х=4.
б)
(x+3)/x=(2x+10)/(x-3) ОДЗ: x₁≠0 x-3≠0 x₂≠3.
(x+3)*(x-3)=x*(2x+10)
x²-9=2x²+10x
x²+10x+9=0 D=64 √D=8
ответ: x₁=-1 x₂=-9.
3.
Пусть скорость течения реки - х. ⇒
70/(10+х)=30/(10-х)
70*(10-x)=30*(10+x)
700-70x=300+30x
100x=400 |÷100
x=4.
ответ: скорость течения реки 4 км/ч.
Задать вопрос
Войти
АнонимМатематика09 ноября 14:55
Решите систему уравнений методом алгебраического сложения 2x^2+3y^2=14. -x^2+2y^2=7
ответ или решение1
Харитонова Светлана
Решим заданную систему уравнений методом алгебраического сложения:
2х^2 + 3у^2 = 14;
-х^2 + 2у^2 = 7.
1. Умножим второе уравнение на 2:
2х^2 + 3у^2 = 14;
-2х^2 + 4у^2 = 14.
2. Выполним прибавление первого и второго уравнения:
2х^2 - 2х^2 + 3у^2 + 4у^2 = 14 + 14;
7у^2 = 28;
у^2 = 28 : 7;
у^2 = 4;
у1 = 2;
у2 = -2.
3. Подставим значение у в первое уравнение и найдем значение х:
2х^2 + 3 * 2^2 = 14;
2х^2 + 3 * 4 = 14;
2х^2 + 12 = 14;
2х^2 = 14 - 12;
2х^2 = 2;
х^2 = 2 : 2;
х^2 = 1;
х1 = 1;
х2 = -1.
2х^2 + 3 * (-2)^2 = 14;
2х^2 = 14 - 12;
2х^2 = 2;
х^2 = 1;
х1 = 1;
х2 = -1.