Начнем со второй системы. Она решается устно. Первое уравнение пропорционально второму с коэффициентом пропорциональности, равным 2. 24*2 = 24*х, откуда х = 2. Тогда у1 = 2, у2 = -2. ответ: (2; 2), (2; -2).
В третьей достаточно сложить оба уравнения. получим: х^2 = 1, откуда х1 = 1, тогда у1 = 5, и х2 = -1, тогда у2 = 5. ответ: (1; 5), (-1; 5)
В первой системе приравняем первое значение у ко второму, получим: 5x^2 - 9x = 5x - 9, откуда х1 = 6, тогда у1 = 21, и х2 = - 2/5, тогда у2 = -11. ответ: (6; 21), (- 2/5; - 11)
a) Рассмотри график функции y=x^2+3x+3 Найдем точки пересечения с осью Ох, решив уравнение x^2+3x+3=0 D = 9 - 4*3= - 3 Т.к. D = -3 < 0 , Следовательно, график y=x^2+3x+3 не пересекает ось Ох Т.к. коэффициент при x^2 = 1>0 , то ветви графика (ветви параболы) направлены вверх, следовательно график полностью распологается выше оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена x^2+3x+3-положительно
б) Рассуждения аналогичны предыдущему примеру Вычислим дискриминант для уравнения 4x-4x^2-2=0 D = 16 - 4*4*2 = -16 Следовательно, график y=4x-4x^2-2 не пересекает ось Ох Т.к. коэффициент при x^2 = -4<0 , то ветви графика (ветви параболы) направлены вниз, следовательно график полностью распологается ниже оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена 4x-4x^2-2-отрицательно
Первое уравнение пропорционально второму с коэффициентом пропорциональности, равным 2.
24*2 = 24*х, откуда х = 2.
Тогда у1 = 2, у2 = -2.
ответ: (2; 2), (2; -2).
В третьей достаточно сложить оба уравнения.
получим: х^2 = 1, откуда х1 = 1, тогда у1 = 5, и х2 = -1, тогда у2 = 5.
ответ: (1; 5), (-1; 5)
В первой системе приравняем первое значение у ко второму, получим:
5x^2 - 9x = 5x - 9, откуда х1 = 6, тогда у1 = 21, и х2 = - 2/5, тогда у2 = -11.
ответ: (6; 21), (- 2/5; - 11)