Руслан, прибавлять надо 3, никакого минуса там нет. Уравнение: (В+14)/(В+3)=(В+7)/В+37/88 Проблема в том, что оно не решается в целых числах. Если домножить на 88*B*(B+3), то получится 88*B*(B+14) = 88(B+3)(B+7) + 37*B*(B+3) 88*B^2 + 88*14*B = 88(B^2 + 10B + 21) + 37*B^2 + 37*3*B 88*B^2 + 88*14*B = 88*B^2 + 88*10*B + 21*88 + 37*B^2 + 111*B Вычитаем 88*B^2 слева и справа и умножаем числа 1232*B = 37*B^2 + 880*B + 111*B + 1848 37*B^2 - 241*B + 1848 = 0 А теперь находим дискриминант D = 241^2 - 4*37*1848 = 58081 - 273504 = -215423 < 0 Решений нет. Но даже если мы что-то напутали, и D = +215423, или D = 58081 + 273504 = 331585 Все равно это не квадрат целого числа, и B иррационально.
Хорошо, вам не объяснили толково что такое вообще математическая логика, но это на самом деле нормальный случай, сами дают и не знают, что дают. Давайте разберемся. Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю. В данном случае за утверждение принимается: A - предположение, говорящее, что Первая буква гласная. B - предположение, говорящее, что Последняя буква согласная. Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры"). Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь). Давайте запишем как нужно само выражение. -A∧-B (вместо минусов нужно черточку над буквой). Таблица истинности выглядит так: В наименованиях столбцов пишите A и B и ваше выражение третьим. Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1. "НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот. "И" - дает 1 если оба операнда 1, иначе дает 0. "ИЛИ" - дает 0 если оба операнда 0, иначе дает 1. Вот и все. Заполняете и получаете нужное.
x э R
Объяснение:
x²+7≥8x-9
x²+7-8x+9≥0
x²-8x+16≥0
(x-4)²≥0