Центр вписанной окружности лежит в точке пересечения биссектрис, значит ОС и OD - биссектрисы. Сумма углов, прилежащих к боковой стороне трапеции, равна 180°, значит сумма их половинок равна 90°: ∠KDO + ∠KCO = 90°, но тогда в треугольнике ODC угол DOC равен 90°.
ОК - радиус, проведенный в точку касания, значит ОК⊥CD. ОК - высота прямоугольного треугольника ODC, проведенная к гипотенузе. Квадрат высоты прямоугольного треугольника равен произведению отрезков, на которые она разбивает гипотенузу: ОК² = СК · KD = 4 ОК = 2 - радиус окружности.
NL - диаметр, проведенный в точки касания, NL⊥BC, АВ⊥ВС, ⇒ NL║AB, и NL = AB как расстояния между параллельными прямыми.
АВ = NL = 2ОК = 4
Если в четырехугольник вписана окружность, то суммы противолежащих сторон равны: АВ + CD = AD + BC = 4 + 5 = 9
Пусть скорость течения воды по подающей трубе = х а скорость течения по отводящей трубе - у Тогда время наполнения = 1/х часов, а время "опорожнения" = 1/у часов. Зная, что через первую трубу бассейн наполняется на 2 часа больше, чем через вторую опорожняется и что при заполненном на одну треть (1\3) бассейне, оноказался пустым спустя 8 часов, составим систему уравнений:
1/х = 1/у + 2 |*ху 1/3 + 8х - 8у = 0 |*3
у - х - 2ху = 0 1 + 24х - 24у = 0
выразим из второго уравнения х: 24х = 24у - 1 х = у - 1/24
подставим в первое уравнение: у - (у-1/24) - 2у(у - 1/24) = 0 у - у + 1/24 - 2у^2 + 1/14у = 0 |*24 48у^2 - 2у - 1 = 0 у1 = 1/6 у2 = - 12/96 (не удовл. усл. задачи)
х = у - 1/24 х = 1/8
время наполнения - 1/х = 1/(1/8) = 8 часов время опустошения - 1/у = 1/(1/6) = 6 часов
Объяснение:
держи