Данное уравнение решается методом "ограниченности функций"
обозначим левую часть уравнения за f(x), а правую за g(x), то есть
найдем области значений этих функций, с производной:
Корень квадратный всегда не отрицательный, значит следовательно
то есть наше уравнение можно разделить на это выражение и останется только:
отсюда x=0 - точка максимума, значит
то есть наша функция сверху ограниченна числом 8, то есть f(x)≤8, а чтобы узнать как она ограничена снизу, нужно еще указать ОДЗ, но для решения в данном случае нам это не нужно
x=0 - точка минимума
Область значения g(x):
теперь мы видим такую картину:
f(x)≤8 , а g(x)≥8, значит эти две функции могут быть равны только тогда, когда они обе равны 8
здесь проще решить второе уравнение и посмотреть будет ли его корень, корнем первого:
подставляем х=0 в первое уравнение:
получилось верное равенство, значит x=0, также является корнем первого уравнения
Приравняем к нулю
Произведение равно нулю, если один из множителей равен нулю
Оценим в виде двойного неравенства
Т.е. при
Снова оценим в виде двойного неравенства
При
Общее решение:
Проверим будут ли неравенства иметь решения при a=0 и а=3
Если а=0, то неравенство запишется так
Корни будут х=0 и х=2
___-___(0)__-___(2)__+___
x ∈ (2;+∞)
Следовательно общих решений с x ∈ [-1;1] нет, значит а=0 подходит
Если а=3, то
Приравниваем к нулю:
___+___(-√3)___-___(-1)___+____(√3)___-___
x ∈ (-√3;-1) U (√3;+∞)
Общее решение неравенства (3-x²)(x+1)<0 с неравенство x²≤1 нет, следовательно а=3 тоже подходит
ответ: