Против течения катер шел расстояние Х
А по течению Х+32
Х+Х+32=88
2Х=56
Х=28
Получается,что катер против течения за 2 часа 28 км
С какой скоростью шёл катер
28:2=14 километров в час
Сколько километров катер по течению
28+32=60
Теперь ответим на вопрос,если бы катеру не течение,то сколько км он бы за 3 часа
14•3=42,а на самом деле км
Найдём разницу
60-42=18 км
Значит благодаря течению катер на 18 км больше за 3 часа
Теперь узнаём скорость течения
18:3=6
Скорость катеру по течению была 20 километров в час
60:3=20 км/час или 14+6=20 км/час
ответ:Скорость течения реки 6 км/час
Скорость катера в стоячей воде 24 ем/час
Скорость катера по течению 20 км/час
Объяснение:
Объяснение:
Областью определения функции называется множество всех значений аргумента при которых значение функции определено.
Рассмотрим 1-е слагаемое:
1) знаменатель не может быть = 0, т.е.
√3 - 5х - 2х² ≠ 0
2) подкоренное выражение должно быть ≥ 0:
3 - 5х - 2х² ≥ 0
Следовательно, подкоренное выражение должно удовлетворять условию:
3 - 5х - 2х² > 0
-2x² - 6x + x + 3 > 0
x(1 - 2x) + 3(1 - 2x) > 0
(1-2x)(x +3) > 0 Произведение > 0, если оба множителя имеют одинаковые знаки:
1) {1-2x > 0 → { 2x < 1 → {x < 0.5
{x+3 > 0 → { x > - 3 → { x > - 3
Общее решение:
-3 < x < 0.5 или (-3; 0,5)
2) {1- 2x < 0 → {2x > 1 → {x > 0,5
{x + 3< 0 → x < - 3
общего решения в этом случае нет.
2-е - слагаемое: подкоренное выражение должно быть ≥ 0:
x + 1 ≥ 0 → x ≥ -1
В итоге получили:
{x < 0,5
{x > - 3
{x ≥ -1
Из системы неравенств выбираем условие, при котором все неравенства будут верны:
-1 ≤ x < 0,5 - это и есть область определения функции.
D(y) = [-1; 0,5)
5/6аb²×b/a × 3a²/b² = 5/2b³