Пусть новая дневная норма равна Х га. С этой нормой фермер вспахал поле за 72/Х = Д (дней). (1)
Фермер превысил дневную норму на 9 га и вспахал поле на 4 дня раньше, то есть со старой нормой он бы вспахал поле за
72/(Х-9) = Д+4 (дней). (2).
Подставим значение (1) в уравнение (2) и получим:
72/(Х-9) = 72/Х + 4. Решаем уравнение:
72Х = 72(Х-9) +4Х(Х-9) => Х² - 9X - 162 = 0.
X1 = (9+√(81+648))/2 = (9+27)/2 = 18.
Х2 получается отрицательным и не удовлетворяет условиям задачи.
Итак, фермер вспахал все поле за 72/18 = 4 дня.
1). 7x² - 8x²y - 3yz + *
Известная часть многочлена: 7x² - 8х²y - 3yz
Если из данной части вывести переменную х, добавив вместо звездочки, скажем, -(7x² - 8х²y), то останется выражение -3yz, не являющееся многочленом по определению.
Поэтому добавим к оставшемуся выражению -3yz еще у²:
7x² - 8x²y - 3yz + * = -3уz + у²
* = -3yz + y² - 7x² + 8x²y + 3yz
* = y² - 7x² + 8x²y
Вместо у² можно взять любой другой одночлен, не содержащий переменную х.
2). (3n + 8) - (6 - 2n) = 3n + 8 - 6 + 2n = 5n + 2
При любом n ∈ N, выражение 5n + 2 при делении на 5 даст остаток 2.
x∈∅