В решении.
Объяснение:
Решить уравнение:
2x²/(x-2) + (3x+2)/(2-x) = x
Сначала преобразовать знаменатель второй дроби, чтобы найти общий знаменатель:
(3x+2)/(2-x) = (3х+2)/ - (х-2) = - (3х+2)/(х-2), тогда уравнение примет вид:
2x²/(x-2) - (3x+2)/(х-2) = x
Умножить уравнение (все части) на (х-2), чтобы избавиться от дробного выражения:
2х² - (3х + 2) = х(х - 2)
Раскрыть скобки:
2х² - 3х - 2 = х² - 2х
Привести подобные члены:
2х² - 3х - 2 - х² + 2х = 0
х² - х - 2 = 0, квадратное уравнение, ищем корни:
D=b²-4ac =1 + 8 = 9 √D= 3
х₁=(-b-√D)/2a
х₁=(1 - 3)/2
х₁= -2/2
х₁= -1;
х₂=(-b+√D)/2a
х₂=(1 + 3)/2
х₂=4/2
х₂=2.
Так как х в знаменателе, по ОДЗ х не может быть равен 2, так как в этом случае знаменатель будет равен нулю, а дробь не будет иметь смысла. Значит, решение уравнения только х= -1.
Возведем левую и правую части уравнения в квадрат
(х+1)^2 = (2(x-2))^2
Перенесем правую часть уравнения в левую и приравняем к нулю:
(х+1)^2 - (2(x-2))^2 = 0
По формуле сокращенного умножения (разность квадратов) упростим
( (х+1) - 2(x-2) )( (х+1) + 2(x-2) ) = 0
(х+1-2х+4)(х+1+2х-4) = 0
(-х + 5)(3х - 3)=0
х1 = 5 х2 = 1
Сделаем проверку:
Проверяем корень х1=5
| 5+1| = 2 |5-2|
|6| = 2 |4|
6 не равно 8 Следовательно х1 = 5 не является корнем
Проверяем корень х2=1
|1+1| = 2 |1-2|
|2| = 2 |-1|
2 = 2 Следовательно х2=1 - корень
ответ: так как корень единственный, то сумма корней будет равна 1