все таки математика настигла огромной волной и накрыла корнями и дробными степенями ???
(x)^1/n = ⁿ√x (например x^1/3 = ∛x x^1/2 = √x)
x² - y² = (x - y)(x + y)
(x + y)² = x² + 2xy + y²
(x^n)^m = x^(nn)
x^n * x^m = x^(n+m)
ⁿ√xⁿ = x (для положительных х)
x^-1 = 1/x
1. 64^1/6 = ⁶√(2⁶) = 2
2. 27 ^2/3 = ∛ 27² = ∛ (3³)² = 3² = 9
3. 0^51/4 = 0 (0 в любой положительной степени = 0)
5. x^1/2 = (x^1/4)²
(a^1/2 - b^1/2) / (a^1/4 + b^1/4) = (a^1/4 - b^1/4)(a^1/4 + b^1/4)/(a^1/4 + b^1/4) = a^1/4 - b^1/4
4. (x^1/3 + y^1/3)² - 2∛(xy) - 1/(∛y)^-2 = x^2/3 + 2x^1/3*y^1/3 + y^2/3 - 2x^1/3*y^1/3 - y^2/3 = x^2/3
^ - степень ( x^2/3 = ∛x² икс в степени две третьих)
Всего шаров 8.
Вероятность извлечь первым белый шар равна 3/8, остаётся 7 шаров из них 2 белых. Вероятность извлечь второй белый шар 2/7. Вероятность что первый и второй белые шары
Р₁=3/8*2/7=6/56=0,11
Аналогично находим что оба шара черные
Р₂=5/8*4/7=20/56=0,36
Вероятность что оба шара одного цвета (или оба белые или оба черные)
Р=Р₁+Р₂=0,11+0,36=0,47
Вероятность что первый белый, а второй черный
Р₃=3/8*5/7=15/56=0,27
Вероятность что первый черный, а второй белый
Р₄=5/8*3/7=15/56=0,27
Вероятность что шары разного цвета
Р=Р₃+Р₄=0,27+0,27=0,54
ответ: более вероятно событие в) - шары разных цветов
Объяснение: