Путь первый работник может выполнить задание за Х дней. Второй за У дней.
На 1/3 задания ему требуется Х/3 дней. Второму на 2/3 задания 2У/3
Х/3=(2У/3)-3
1/(1/Х+1/У)=2 1=2/Х+2/У ХУ=2Х+2У
—————————
Х=2У-9
ХУ=2Х+2У
———————————
У=(Х+9)/2
Х*Х+9Х=4Х+4У
Х*Х+9Х=4Х+2Х+18
Х*Х+3Х=18
(Х+1,5)*(Х+1,5)=20,25=4,5*4,5
Положительное решение Х=3
ответ: За 3 дня.
Проверка: Второй за 6 дней.
1/3 первый выполнит за день, второй 2/3 за 4 дня.
Первый за день делает 1/3 второй 1/6 . Вместе 1/2 часть задания. Значит вместе все сделают за 2 дня. ответ верный.
Объяснение:
2,5 (часа) пароход по течению реки.
1,5 (часа) пароход против течения реки.
Объяснение:
Пароход по течению реки и против течения путь 68 км за 4 часа. Сколько времени он двигался против течения и по течению реки (отдельно), если по течению он двигался со скоростью 20 км / ч, а против течения - 12 км / ч?
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - расстояние по течению
у - расстояние против течения
х/20 - время по течению
у/12 - время против течения
По условию задачи составляем систему уравнений:
х+у=68
х/20 + у/12 =4
Преобразуем второе уравнение, умножим его на 240, чтобы избавиться от дроби:
12х+20у=960/4 для упрощения:
3х+5у=240
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
х=68-у
3(68-у)+5у=240
204-3у+5у=240
2у=240-204
2у=36
у=18 (км) - расстояние против течения.
х=68-у
х=68-18
х=50 (км) - расстояние по течению.
Скорость по течению и против течения известны, можем вычислить время:
50/20=2,5 (часа) пароход по течению реки.
18/12=1,5 (часа) пароход против течения реки.
Объяснение:
ответ: -2.