Очень найдите ( sin5α + sinα , если sinα = 1/√5
"решение" : * * * sinα +sinβ =2sin( (α+β)/2 ) *cos( (α - β)/2 ) * * *
sin5α + sinα = 2*sin ( (5α +α)/2 ) *cos ( (5α -α)/2 ) =
2*sin3α*cos2α =2*(3sinα - 4sin³α)* (1 -2sin²α ) = || sinα = 1/√5 || =
=2*(3 /√5 - 4 / 5√5)* (1 - 2* 1/5 ) = 2*( ( 3*5 - 4) / 5√5 )*( (5*1 -2)5 ) =
=2* (11 / 5√5) * (3/5) = 66/25√5 = 66√5 / 125
ответ: 66√5 / 125
* * * P.S. sin3α =sin(2α+α) = sin2α*cosα+ cos2α*sinα =
2sinα*cosα*cosα + (cos²α -sin²α)*sinα =sinα *(2cos²α + cos²α - sin²α) =
sinα *(3cos²α - sin²α) = sinα *( 3(1 -sin²α) - sin²α ) = 3sinα - 4sin³α * * *
5) 500/3*Π
Объяснение:
Объем шара выражается формулой:
V = 4/3*Π*R^3
Образующая конуса L, радиус конуса r и высота H образуют прямоугольный треугольник.
Гипотенуза L= 5, один катет H=2,5, второй катет по теореме Пифагора
r = 5*√3/2 = 2,5*√3
Это радиус основания конуса.
Углы в этом треугольнике 90°, 30° и 60°, причем 60° находится напротив радиуса конуса.
Теперь рассмотрим сферу.
В ней проходит два радиуса, один из центра сферы до вершины конуса, второй из центра сферы до любой точки на окружности конуса.
Радиусы одинаковые, и получается равнобедренный треугольник из R, R и L
При этом угол между R и L равен 60°. Значит, треугольник равносторонний.
Это значит, что R = L = 5 см.
Объем шара
V = 4/3*Π*R^3 = 4/3*Π*5^3 = 4/3*Π*125 = 500/3*Π
2054Х10⁹