Есть такое правило: чтобы определить, на какую цифру оканчивается число, нужно: 1)посмотреть на само число и найти последнюю цифру этого числа 2)производить операции будем с этой цифрой, в данном случае, с 3. 3)поделить степень этого числа на 4. далее самое интересное: 1)если у тебя степень делится на 4 без остатка, то это число будет оканчиваться на цифру числа в 4 степени. 2)если у тебя степень делится с остатком, то надо смотреть на остаток.если остаток 3, то число будет оканчиваться на эту же цифру, только в 3 степени этого же числа.если на 2, то число будет оканчиваться на ту же цифру, как и это число во второй степени. следуем по правилу: число 3 оканчивается на 3.значит, будем ее рассматривать(просто бывает что 12435 надо возвести в огромную степень, везде надо смотреть на последнюю цифру) далее, делим степень на 4: 17: 4=4 и остаток 1.значит, по правилу, число 3 в 17 степени будет оканчиваться на ту же цифру, как 3 в 1 степени.а 3 в первой степени=3. следовательно, 3 в 17 степени будет оканчиваться на 3 подробнее - на -
0 " class="latex-formula" id="TexFormula4" src="https://tex.z-dn.net/?f=f%27%28x%29%3E0%20" title="f'(x)>0 "> при x∈(-≈;)U(;+≈) Следовательно, функция возрастает на промежутке от минус бесконечности до достигая в этой точке локального максимума, затем убывает до локального минимума в точке , затем снова возрастает. => Следовательно функция является выпуклой на интервале от минус бесконечности до 0, и вогнутой, соответственно, от 0 до плюс бесконечности График выглядит, примерно, так.Посчитай пять точек для подгонки к координатам: x∈{-2;-1;0;1;2}
-0.4d=-26
d=2.6:0,4
d=26:4
d=6,5