1) x = 4
2) x∈ ø
3) -1
4) 0,5
Объяснение:
1) √x + 1 = 3
переносим 1 в правую часть
√x = 3 - 1
√x = 2
теперь возводим обе части в квадрат,чтобы избавиться от корня
(√x)^2 = 2^2
x = 4
2) √4x+1 = √2x-1
ОДЗ : 4x+1 > 0 и 2x - 1 > 0
4x > -1 и 2x > 1
x > -1/4 и x > 1/2
теперь возводим обе части в квадрат
4x + 1 = 2x - 1
x переносим в левую часть,числа в правую
4x - 2x = -1 - 1
2x = -2
x = -1 - не удовлетворяет одз,значит решения нет.
3) 2x^2 + 3x + 1 = 0
D = 3^2 - 4 * 2 * 1 = 9 - 8 = 1
x1 = -3 + 1 / 2 * 2 = -2 / 4 = - 1/2
x2 = -3 - 1 / 2 * 2 = -4 / 4 = -1
4) 4x^2 - 4x + 1 = 0
D = (-4)^2 - 4 * 4 * 1 = 16 - 16 = 0
x = 4 / 2*4 = 4 / 8 = 1 / 2 = 0,5
ответ: 2*x³+5*x²+x-2=(x+1)*(x+2)*(2*x-1).
Объяснение:
Запишем данный многочлен в виде 2*(x³+5/2*x²+1/2*x-1). Для того, чтобы разложить многочлен в скобках на множители, нужно решить уравнение x³+5/2*x²+1/2*x-1=0. Это - приведённое кубическое уравнение, поэтому одним из его целых корней (если они есть) может быть целый делитель свободного члена данного уравнения, то есть числа -1. Таких делителей всего два: 1 и -1. Подставляя значения x=1 и x=-1 в данное уравнение, находим, что число x=1 не является корнем уравнения, а число x=-1 - является. Теперь разделим многочлен x³+5/2*x²+1/2*x-1 на двучлен x-(-1)=x+1. После этого получим тождество x³+5/2*x²+1/2*x-1=(x+1)*(x²+3/2*x-1). Теперь разложим на множители квадратный трёхчлен x²+3/2*x-1, для чего нужно решить уравнение x²+3/2*x-1=0. Оно имеет корни x1=1/2 и x2=-2, поэтому x²+3/2*x-1=0=(x-1/2)*(x+2). Тогда x³+5/2*x²+1/2*x-1=(x+1)*(x-1/2)*(x+2) и окончательно 2*x³+5*x²+x-2=(x+1)*(x+2)*(2*x-1).
перепиши это в свой тетрадь