М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ostapsheremetaoooo
ostapsheremetaoooo
02.09.2020 04:45 •  Алгебра

Найти общее решение дифференциального уравнения.


Найти общее решение дифференциального уравнения.

👇
Ответ:
nikolay2045
nikolay2045
02.09.2020

y''+25y=-10sin5x+20cos5x+50e^{5x}\\\\1)\ \ y''+25y=0\ \ \ \to \ \ \ k^2+25=0\ \ ,\ \ k^2=-25\ ,\ \ k_{1,2}=\pm 5i\\\\y_{obshee\ odnor.}=C_1cos5x+C_2sin5x\\\\2)\ \ f(x)=f_1(x)+f_2(x)\ \ ,\ \ f_1(x)=20cos5x-10sin5x\ ,\ \ f_2(x)=50e^{5x}\ \ ,\\\\y_1=x\cdot (Acos5x+Bsin5x)\\\\y_1'=Acos5x+Bsin5x+x\cdot (-5Asin5x+5Bcos5x)\\\\y_1''=-5Asin5x+5Bcos5x-5Asin5x+5Bcos5x+x\cdot (-25Acos5x-25Bsin5x)

y_1''+25y_1=-5Asin5x+5Bcos5x-5Asin5x+5Bcos5x+\\\\+x\cdot (-25Acos5x-25Bsin5x)+25x\cdot (Acos5x+Bsin5x)=-10sin5x+20cos5x

cos5x\ |\ 10B=20\ \ ,\qquad \qquad B=2\ ,\\sin5x\ |\ -10A=-10\ \ ,\qquad A=1\ .\\\\y_1=x\cdot (cos5x+2sin5x)\\\\\\y_2=D\, e^{5x}\\\\y_2'=5De^{5x}\\\\y_2''=25De^{5x}\\\\y''_2+25y_2=25De^{5x}+25De^{5x}=50De^{5x}\ \ ,\ \ 50De^{5x}=50e^{5x}\ \ ,\ \ D=1\\\\y_2=e^{5x}

3)\ \ y_{obshee\ neodn.}=C_1cos5x+C_2sin5x+x\, (cos5x+2sin5x)+e^{5x}    

4,7(11 оценок)
Открыть все ответы
Ответ:
TinaAkh
TinaAkh
02.09.2020

y=x^2-3x+2

1) Находим точки пересечения графика функции с осью Ох:

     х^2-3x+2=0

     x1=1, x2=2

    (1;0) и (2;0) - искомые точки

 

2) Находим уравнение касательной к графику функции в точке х=1

    y`(x)=(x^2-3x+2)`=2x-3

    y`(1)=2*1-3=-1   k1=-1

    y(1)=1^2-3*1+2=1-3+2=0

    y=0+(-1)(x-1)=-x+1 -уравнение касательной в точке х=1

 

3) Находим уравнение касательной к графику функции в точке х=2

    y`(2)=2*2-3=4-3=1  k2=1

    y(2)=2^2-3*2+2=4-6+2=0

    y=0+1(x-2)=x-2 -уравнение касательной в точке х=2

 

4) Коэффициент угла наклона первой касательной k1=-1, а второй касательной k2=1,

    следовательно, касательные взаимно перпендикулярны,

    т.е.угол между ними равен 90 градусов.

 

4,8(62 оценок)
Ответ:
Nastya1112172
Nastya1112172
02.09.2020
Фактически задача сводится к нахождению координат вектора CD.Мы знаем, что СD перпендикулярно AB. И CD проходит через точку C.Условие перпендикулярности -> косинус угла между векторами CD и AB равен нулю.Формула косинуса угла между векторами - AB={-1+5;4-1}={4;3}CD={x2-3;y2-2}Составим уравнение прямой АВ:  (*)Подставляя вместо x1 и y1 в формулу косинуса 4 и 3 соответственно получим:4(x2-3)+3(y2-2)=0Также точка D принадлежит прямой AB, а значит x2 и y2 удовлетворяют уравнению (*).Решаем полученную систему уравнений.Мне лень решать - сами решите. Как найдёте x2 и y2 - подставьте их и найдите координаты вектора CD. Зная координаты направляющего вектора и точку, через которую проходит прямая, легко составить уравнение прямой.Оно выглядит так: , где  - координаты напрвляющего вектора (в нашем случае вектора CD), а х0 и у0 - координаты точки, через которую проходит прямая (в нашем случае С или D - на выбор)
4,4(67 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ