Объяснение:
a) x=1/4 - 3/40y 20x-7y=5 (это запиши как систему)
20(1/4-3/10y)-7y=55-3/2y-7y=5-3/2y-7y=0-17/2y=0y=0 x=1/4 ответ: (1/4 ; 0 )б) x=1/5 + 2/5y 15x-3y = 3 (система)
15(1/5 + 2/5y)-3y = -33+6y-3y= -33y= -6y= -2x= -3/5ответ: (-3/5 ; -2)в) a=4/9-14/9b 33a+42b=10 (система)
33(4/9-14/9b) +42b=1044/3-154/3b+42b=1044/3-28/3b=1044-28b=30-28b=-14b=0.5a=-1/3ответ: (-1/3 ; 0,5)г) x=14/13+12/13y 11x-4=18y (система)
11(14/13+12/13y)-4=18y154/13+132/13y-4=18y102/13+132/13y=18y102+132y=234y-102y=-102y=1x=2ответ: (2; 1)
.
Объяснение:
0
Перенумеруем все города. Для городов i, j направим дорогу из города с меньшим номером в город с большим номером. Тогда при проезде по дорогам мы всегда приезжаем в города с большими номерами, и обратно не возвращаемся.
Из города 1 можно добраться до всех, а из n нельзя выехать. Единственный путь, проходящий все города -- это 1-2-...-n.
Теперь надо показать, что такая конструкция всего одна с точностью до перенумерации городов. Из этого будет следовать, что её осуществить ровно n!.
Для начала можно доказать, что имеется город, из которого нельзя выехать. В противном случае мы можем бесконечно долго путешествовать, и какие-то посещаемые города при этом повторятся. Это значит, что основное условие нарушается. Городу с таким свойством присвоим значение n. Он всего один, так как из остальных городов идут стрелки в n.
Далее применяем индукцию, отбрасывая город n и стрелки в него. Для оставшихся городов формируется (по предположению) единственная нумерация 1,2,...,n-1 такая, что из i в j идёт стрелка <=> i < j. Поскольку n больше всех остальных чисел, после возвращения n-го города на место всё сохранится.
Можно и без индукции. Для каждого города рассмотрим путь максимальной длины по стрелкам, оканчивающийся в данном городе. Длину такого пути ему и сопоставим. Значения могут приниматься от 0 до n-1. При этом они не повторяются: если для двух городов значения равны k, то из одного из них попадаем по ребру в другой, что увеличивает длину до k+1. Таким образом, все значения используются ровно по разу. Увеличивая их на 1, имеем описанную выше нумерацию. Ясно также, что ребро всегда идёт из i в j только при i < j.