1.Решите неравенство методом интервалов
-х(в квадрате)-12х<0
-x^2-12x<0
-x(x-12)<0
x(x-12)>0
ищем критические точки х=0 - первая точка, х-12=0, х=12 - вторая точка
+ - +
012>x
x=13: x(x-12)=13*(13-12)>0
значитна промежутке (12;+бесконечность) л.ч. неравенства больше 0
при переходе через точку 12, меняем знак с + на -, и получаем, что на промежутке (0;12) л.ч. неравенства меньше 0
при переходе через точку 0 меняем знак с - на + ,и получаем, что на промежутке
(-бесконечность; 0) л.ч неравенства больше 0,
таким образом решением неравенства будет
(-бесконечность; 0)обьединение(12;+бесконечность)
2.При каких значениях параметра m уравнение
4х(в квадрате)-2mx+9=0
имеет два различных корня?
уравнение имеет два различных корня если дискриминант больше 0, т.е.
D=(-2m)^2-4*4*9=4m^2-144>0
4(m^2-36)>0
m^2-36>0
(m-6)(m+6)>0
ищем критические точки m+6=0, m=-6 - первая точка, m-6=0, m=6 - вторая точка(-6<6)
+ - +
(-6)6>m
x=7: (m-6)(m+6)=(7-6)(7+6)>0
значитна промежутке (6;+бесконечность) л.ч. неравенства больше 0
при переходе через точку 6, меняем знак с + на -, и получаем, что на промежутке (-6;6) л.ч. неравенства меньше 0
при переходе через точку -6 меняем знак с - на + ,и получаем, что на промежутке
(-бесконечность; -6) л.ч неравенства больше 0,
таким образом решением неравенства будет
m Є (-бесконечность; -6)обьединение(6;+бесконечность)
Відповідь:
А,1 а)х=√16/25=4/5 б)3х²-15х=0 скоротимо на 3 отримаємо:х²-5х=0, х(х-5)=0 х1=0,х2=5 в)5х2+20=0 скоротимо , отримаємох²+4=0 коренів немає, √-4 не можливий
А2 а)Отримаємо квадратне рівння 3х²+2х-8=0 знайдемо корені через дискримінант , Д=10 , х1=-2 , х2=4/3 , б (х-1)²-4=0 , отримаємо квадратне рівння х²-2х-3=0 знайдемо корені за теоремою Вієтах1+х2=2, х1*х2=-3, х1=3,х2=-1 А3 а)х²-27=0 х²=27 , х=3√3 б) х=√3
В1)х²-8х+12=0 (х-4)²-4=0 б)х²+2х-15=0 (х+1)²-16=0
Пояснення:
350:2.5= реши на калькуляторе