М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ariunkh
Ariunkh
06.12.2022 20:49 •  Алгебра

Определи координаты точки M — середины отрезка AB, если известны координаты точек A(7; 5) и B(−6; −2).

👇
Ответ:
Magomedrasul05555
Magomedrasul05555
06.12.2022

M(0,5;1,5)

Объяснение:

M(x;y)=\frac{A(x;y)+B(x;y)}{2}

x_M=\frac{x_A+x_B}{2}=\frac{7-6}{2}=0,5\\x_M=0,5

y_M=\frac{y_A+y_B}{2}=\frac{5-2}{2}=1,5\\y_M=1,5

M(0,5;1,5)

4,8(25 оценок)
Открыть все ответы
Ответ:
poldin04
poldin04
06.12.2022

Смотри, ученика всего 23. У нас спрашивают, что сколько учеников имеет ТОЧНО более трёх конфет.

Нам сказано, что 7 из них имеют по 3 или менее конфет, а восемнадцать, по 2 или больше. А всего учеников-то 23!

2 или больше, может быть те восемнадцать имеют 3 конфеты, значит они входят в те 7. (ведь 7 учеников получили 3 или меньше, а 18 2 или больше, они могли получить 3 конфеты, ведь 2>3)

23-7=16 (конфет, которые ещё входят в список возможных детей, у которых больше 3-ёх конфет)

Но, ведь 18+7=25! А не 23, значит те, кто входят в число 18-ть (эти 2 человека из тех семи, кто имеет меньше двух конфет) Значит 2 человека ещё выпадают, у них по 3 или менее конфет. (Ведь нам не сказано, что 18 имеют по 3 или более, нам сказано, что 18 имеют 2 и более, значит могут иметь и 3 конфетки, и входить в число тех, кто получил меньше трёх, а не больше)

Значит 16-2=14 (ещё минус 2 человека)

Это число тех, кто точно имеет больше трёх конфет.

ответ: 14
4,7(77 оценок)
Ответ:
forest7775owc130
forest7775owc130
06.12.2022
1)При выполнении четырех арифметических действий (кроме деления на нуль) над рациональными числами всегда получаются рациональные числа.
2) Каждое рациональное число можно представить в виде бесконечной периодической десятичной дробиЭто бесконечная десятичная дробь, у которой начиная с некоторого десятичного знака повторяется одна и та же цифра или несколько цифр - период дроби. Например, 0,3333... = 0,(3)
1,057373... = 1,05(73)
3)Существуют стандартные обозначения для некоторых множеств. Например, − множество целых чисел; − множество рациональных чисел; − множество иррациональных чисел; − множество действительных чисел; − множество комплексных чисел.4)Это вместе взятые множества рациональных и иррациональных чисел, т.е. любое положительное число, отрицательное число или нуль. 
5)Действительные числа образуют совокупность элементов, обладающую следующими свойствами.     Если a и b - действительные числа (алгебраические, рациональные, целые, положительные целые), то таковыми же являются
иa + b и ab (замкнутость), (1)
a + b = b + a, ab = ba (коммутативность), (2)
a + (b + c) = (a + b) + c = a + b + c, a(bc) = (ab)c = abc (ассоциативность),  (3)
a * 1 = a (единица), (4)
a(b + c) = ab + ac (дистрибутивность),(5);
из a + c = b + c следует a = b, из ca = cb, , следует a = b (сокращение).  (6)
6)
7) Два числа, произведение которых равно 1, называются взаимно обратными.
8)   7-3 - числовое выражение,
(8+3,2)·5,4 - тоже числовое выражение, и они имеют смысл
3+:)(+)-+  не имеет смысла
9)Математическое выражение, составленное из чисел, скобок и знаков арифметических действий называется числовым выражением.
10)Если в числовом выражении появляются буквы - оно становится буквенным выражением
у+5, у-переменная величина
11)да например а+а+(а+а) причём а = 4
12)нет, потому что в нем нет букв
4 нельзя 
4х можно
13) Одночлен − это произведение чисел и степеней переменных с  
натуральными показателями.  

    Например:       13a^3 b^2;     13x^12 y^11;     2(a^4)^3 c^7 (−9)z^11 . 
14)Одночленом называется алгебраическое выражение, являющееся произведением букв и чисел.Эти буквы и числа называются множителями данного одночлена.Например, алгебраическое выражение ЗаЬс есть одночлен; его множителями являются число 3 и буквы а, Ь, с.
15)Одночлен – это произведение двух или нескольких сомножителей, каждый из которых либо число, либо буква, либо степень буквы. Например, 3 a 2 b 4 ,    b d 3 ,    – 17 a b c
16)  Число 0 называется нулевым одночленом.  
17)
4,4(73 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ