192
Объяснение:
Чётные цифры: 0, 2, 4, 6, 8.
пятизначные числа не начинаются с 0, значит, на первом месте любая из четырёх цифр: 2, 4, 6, 8 На втором месте цифра 1 или 3, два варианта.
На третьем месте можно написать 0, но нельзя ту цифру, которая на первом месте. Цифры в записи числа не должны повторяться. Значит, четыре варианта для записи второй цифры.
На четвёртом месте цифра 5 или 7 - два варианта.
На пятом месте - чётная цифра, но не такая, как на первом и третьем - три варианта.
На шестом месте цифра 9 - один вариант.
По правилу произведения перемножаем возможные варианты постановки каждой цифры:
4⋅2⋅4⋅2⋅3⋅1=192
ответ: 192
Выделим полный квадрат из выражения
4m²+3mn+2n²=(4m²+3mn+9n²/16)+2n²-9n²/16=(2m+3n/4)²+23n²/16
Квадрат любого числа положителен или равен 0,сумма положительных положительна.Значит знаменатель дроби положителен⇒5/(4m²+3mn+2n²)>0
2
a)5x²+20x+15=5(x²+4x+3)
2x³+9x²+10x+3=x²(2x+1)+4x(2x+1)+3(2x+1)=(2x+1)(x²+4x+3)
(5x²+20x+15)/(2x³+9x²+10x+3)=5(x²+4x+3)/(2x+1)(x²+4x+3)=5/(2x+1)
b)(n^4-9n^3+12n^2+9n-13)/(n^4-10n^3+22n^2-13n) =
=[(n^4+n³)-(10n³-10n²)+(22n²+22n)_(13n+13)]/n(n³-10n²+22n-13)=
=[n³(n+1)-10n(n+1)+22n(n+1)-13(n+1)]/n(n³-10n²+22n-13)=
=(n+1)(n³-10n²+22n-13)/n(n³-10n²+22n-13)=(n+1)/n