Пусть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [Величина s введена для удобства, она потом сократится]. Тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. Время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x. Второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2):(x-15) = s/(2*(x-15)), а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. По условию, t1 = t2_1+t2_2. Получаем уравнение:
s/x = s/(2*(x-15)) + s/180
Сократим (как и было обещано J ) на s и решим уравнение.
1) х4-5х2+4=0 тк это биквадратное уравнение то пусть х2= t, где t - неотрицательное число тогда: - 5t + 4=0 по т. виета t1= 4 t2 = -1, не подходит по условию остается только t=4 вернемся к исходной переменной х2=4 х=2 или х=-2 2)2 - -1=0 так же обозначаем за t, t- неотрицательноe 2 -t-1=0 d=1+4*2*1=9 t1=1 t2=-0.5, не подходит по условию вернемся к исходной переменной =1 х=1 или х=-1
Пусть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [Величина s введена для удобства, она потом сократится]. Тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. Время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x. Второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2):(x-15) = s/(2*(x-15)), а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. По условию, t1 = t2_1+t2_2. Получаем уравнение:
s/x = s/(2*(x-15)) + s/180
Сократим (как и было обещано J ) на s и решим уравнение.
1/x = 1/(2*(x-15)) + 1/180 (2)
2*(x-15)*180 = 180*x + 2*(x-15)*x
(x-15)*180 = 90*x + (x-15)*x
180*x – 15*180 = 90*x + x2 – 15*x
180*x – 15*180 = 90*x + x2 – 15*x
x2 + (90-15 – 180)*x +15*180 = 0
x2 — 105*x +15*180 = 0
Решим полученное квадратное уравнение.
D = 1052 – 4*15*180 = (7*15)2 – 4*15*(15*12) =
= 152*(72 – 4*12) = 152*(49 – 48) = 152
Следовательно, уравнение (2) имеет 2 корня:
x1 = (105+15)/2 = 60; x2 = (105-15)/2 = 45
Так как x>54, то x=60
ответ 60