Нам нужно доказать, что √17 является иррациональным числом. Пусть оно является рациональным числом. Тогда его можно представить в виде m/n, где m ∈ Z, n ∈ N и дробь несократимая. Возведя в квадрат, получаем, что 17 = m²/n² Тогда 17n² = m² Чтобы равенство было верным, необходимо, чтобы m ⋮ 17 тогда и n ⋮ 17, иначе данное равенство будет неверным, т.к. 17 - простое число. Тогда дробь m/n будет сократимой, т.к. и числитель, и знаменатель кратны 17. Но это невозможно, поэтому дробь вида (m/n)² = 17 не существует ⇒ число 17 не может являться квадратом рационального числа, т.е. √17 - иррациональное число.
3, 2, 1
Объяснение:
х/6 < 11/18
3х/18 - 11/18 < 0 => 3х < 11
х < 11/3
х < 3,(6)
натуральные числа, меньшие 3,(6): 3, 2, 1