М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ZloyFuzz
ZloyFuzz
06.07.2022 14:00 •  Алгебра

Решить! решите неравенство -2< =5-6х< =5 < =(меньше или равно)

👇
Ответ:
Мне кажется (<) -2<5-6х<5
4,7(22 оценок)
Ответ:
moto5
moto5
06.07.2022
-2 ≤ 5-6х ≤ 5
чтобы упростить центральное выражение (5-6х) мы вычитаем из каждого члена двойного неравенства пятерку:
-2 ≤ 5-6х ≤ 5 | -5
получаем:
-7 ≤ -6х ≤ 0
Далее избавляемся от -6. Для этого делим все члены неравенства на -6 и получаем
7/6 ≥ х ≥ 0 (знаки поменялись потому что мы делили на число с минусом)
ответ: [0;7/6] (скобки обязательно квадратные)
4,7(19 оценок)
Открыть все ответы
Ответ:
Дианчик777
Дианчик777
06.07.2022
1) 90 - 1/3x > 91 -1/3x > 91 - 90 -1/3x > 1 1/3x < -1 x < -3 т.к. -3 не входит в решение неравенства, то x = -4 - наибольшее целое его решение. 2) 18 1/9  ≥ 0,2x + 18 18 1/9 - 18  ≥ 0,2x 1/9  ≥ 0,2x 5/9  ≥ x x  ≤ 5/9 0 < 5/9 < 1, значит, x = 0 - наибольшее целое решение неравенства. 3) 30,08 < -8/9x - 1,92 30,08 + 1,92 < -8/9x 32 < -8/9x -4 > 1/9x x < -36 т.к. x = -36 не входит, то x = -37 является наибольшим целым решением неравенства. 
4,5(88 оценок)
Ответ:
pudova20001katya
pudova20001katya
06.07.2022
Так как EC - биссектриса, то:
\frac{DC}{ED} = \frac{CK}{EK} \ \ \textless \ =\ \textgreater \ \ \frac{CK}{DC}= \frac{EK}{ED}
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
x= \frac{x_1+\lambda *x_2}{1+\lambda} &#10;\\y= \frac{y_1+\lambda *y_2}{1+\lambda} &#10;\\\lambda= \frac{m}{n}
ищем длины сторон:
для этого используем формулу |AB|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}
|ED|=\sqrt{(3+4)^2+7^2}=\sqrt{98}&#10;\\|EK|=\sqrt{(3-8)^2+(2-3)^2}=\sqrt{26}&#10;\\|DK|=\sqrt{144+64}=\sqrt{208}
находим координаты точки C:
x_1=8;\ x_2=-4;\ y_1=3;\ y_2=-5&#10;\\\lambda= \frac{CK}{DC} = \frac{EK}{ED} = \frac{\sqrt{26}}{\sqrt{98}}=\sqrt{ \frac{26}{98} }=\sqrt{ \frac{13}{49} } = \frac{\sqrt{13}}{7} &#10;\\C( \frac{8+ \frac{\sqrt{13}}{7} *(-4)}{1+ \frac{\sqrt{13}}{7}} ; \frac{3+ \frac{\sqrt{13}}{7}*(-5)}{1+ \frac{\sqrt{13}}{7}} )=C( \frac{8- \frac{4\sqrt{13}}{7} }{ \frac{7+\sqrt{13}}{7} } ; \frac{3- \frac{5\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}} )=
=C( \frac{ \frac{56-4\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}}; \frac{ \frac{21-5\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}})=C( \frac{56-4\sqrt{13}}{7+\sqrt{13}} ; \frac{21-5\sqrt{13}}{7+\sqrt{13}} )
теперь определим вид треугольника для этого используем теорему косинусов:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E:
DK^2=ED^2+EK^2-2ED*EK*cosE&#10;\\cosE= \frac{ED^2+EK^2-DK^2}{2ED*EK} = \frac{98+26-208}{2\sqrt{98*26}}\ \textless \ 0
cosE<0 поэтому угол тупой и треугольник тупоугольный
ответ:
1) C( \frac{56-4\sqrt{13}}{7+\sqrt{13}} ; \frac{21-5\sqrt{13}}{7+\sqrt{13}} )
2) треугольник тупоугольный
4,6(72 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ