Чтобы доказать, что треуг равноб, нужно найти длины всех трех сторон: координаты стороны АВ (из конца вычитаем начало) : (2-(-6); 4-1)=(8;-3) АВ= корень квадратный из (восемь в квадрате плюс (минус три в квадрате) = корень квадратный из семидесяти трех аналогично все остальные стороны ВС=(2-2;-2-4)=(0;-6) длина ВС = корень квадратный из (ноль в квадрате плюс (минус шесть в квадрате)) = корень из 36 = 6 АС=(2-(-6);-2-1)=(8;-3) АС=корень квадратный из суммы квадратов координат получаем, что и длина АС равна корень из 75 АВ=АС, то есть треуг равноб
Попробую объяснить) возьмём 8 и рассмотрим, на что будет оканчиваться, если 8 будет в степени 1: 8, 2: 4, 3: 2, 4: 6, 5: 8, 6: 4 - получаем цикл, где идёт повторение каждую 4-ую степень. Т.к. 2016 делится на 4, следовательно 8^2016 оканчивается на 6(8^4=...6). Тогда следующее число степенью 2017 будет оканчиваться на 8 Далее проделываем такой же анализ для 2017, цикл будет выглядеть следующим образом 1:7, 2:9, 3:3, 4:1, 5:7. Получаем, что 2017^2017 будет оканчиваться на 7. Ну и если сложить 2017^2017 и 8^2017 то конечное число будет оканчиваться на 5(7+8=15), следовательно сумма делится на 5, ч.т.к
Объяснение:
неверно 2 и 3