Объяснение:
Чтобы узнать какой цифрой оканчивается число:
Делим показатель степени на число вариантов, тоесть на количество цифр, которыми может оканчиваться число в разных целых положительных степенях, далее смотрим по остатку, который останется (или не останется. если нацело) при делении.
Рассмотрим отдельно каждое слагаемое данной суммы.
54¹=54, оканчивается на 4 (первый вариант, если при делении, указанном выше, остаток получится 1)
54²= 2916, оканчивается на 6 (второй вариант, если при делении остаток получится 2 (нацело))
Вариантов 2.
35÷2= 17 (остаток 1), тогда нам подходит первый вариант, тоесть 54³⁵ будет оканчиваться на 4.
Рассмотрим 28²¹
28¹=28, оканчивается на 8 (первый вариант, если получится остаток 1)
28²=784, оканчивается на 4 (второй вариант, если выйдет остаток 2)
28³=21952, оканчивается на 2 (третий вариант, если получится остаток 3)
28⁴=614656, оканчивается на 6 (четвертый вариант, если получится остаток 4 (нацело))
Вариантов 4.
21÷4=5 (остаток 1), значит первый вариант, тоесть 28²¹ будет оканчиваться на 8.
Сложим последние цифры чисел в степенях.
4+8=12, оканчивается на 2.
Значит 54³⁵ + 28²¹ оканчивается на 2
ответ: 2
Объяснение:
Задание 1
Значение у из первого уравнения подставим во второе уравнение
Если дискриминант равен нулю , то квадратное уравнение имеет только один действительный корень, также можно сказать , что квадратное уравнение имеет два действительных корня , которые равны между собой.
Задание 2
первое уравнение в системе это разность кубов, разложи на множители:
из второго уравнения подставим значение выражения х²+ху+у²
подставим значение х во второе уравнение системы :
тогда
Корни уравнения ( 3 ;1) и ( -1 ; -3)