Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 18.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=18
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=18
2n+1+2n+5=18
4n=12
n=3
3; 4 и 5;16
(6²-5²)+(4²-3²)=11+7
11+7=18 - верно
Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 18.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=18
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=18
2n+1+2n+5=18
4n=12
n=3
3; 4 и 5;6
(6²-5²)+(4²-3²)=11+7
11+7=18 - верно
Сечение тетраэдра ,проходящее через точку С1 параллельно плоскости ВА1С - это будет плоскость C1B1A2, A2 - середина отрезка А1D.
Площадь C1B1A2 равна четверти площади ВА1С (Подобные треугольники).
Площадь ВА1С найдем по формуле Герона (S=sqrt{p(p-a)(p-b)(p-c)}. где p — полупериметр треугольника), для этого нужно знать все стороны.
ВС известна - а, а А1В=А1С=a*sqrt(3))/2 (высота равностороннего треугольника)/
p=(a+2*a*sqrt(3)/2)/2=(a+a*sqrt(3))/2
S (C1B1A2) = S (ВА1С)/4 = (sqrt{(a+a*sqrt(3))/2*((a+a*sqrt(3))/2-a)((a+a*sqrt(3))/2-(a*sqrt(3))/2)((a+a*sqrt(3))/2-(a*sqrt(3))/2)}/4=sqrt{(a^4)/8)/4=(а^2)/4sqrt(8)=(a^2)/8sqrt(2)
Все.