Постройте график функции y=x+3. По графику функции ответьте на вопросы:
а)чему равно значение y при x=1;
б)чему равно значение x при y=4.
Построить график. График линейной функции, прямая линия. Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
Установлено, что какой бы ни была окружность, отношение ее длины к диаметру является постоянным числом. Это число принято обозначать буквой π ( читается - "пи" ). Обозначим длину окружности буквой , а ее диаметр буквой d и запишем формулу
Число π приблизительно равно 3.14 Более точное его значение π = 3,1415926535897932
Исходя из формулы выше, выведем, чему равна окружность, если известен диаметр ( d )
Если известен радиус ( r ) , то формула длины окружности будет выглядеть так:
Площадь круга вычисляется по формуле где: S — площадь круга r — радиус
Чётная функция т.к. функция, не изменяющая своего значения при изменении знака независимого переменного. т.е. что под корнем не бери Y всегда будет больше 0 т.к. |x| то выражения под корнем принимает всегда значения >0 основываясь на этих свойствах функции, можно сделать вывод, что функция f(х)= - четная т.к. выполняется равенство f(-x)=f(x) при любом Х
А, чтобы это доказать письменно, то просто напишите выражение f(-x)=f(x) - функция называется чётной, если справедливо равенствои возьмите пару произвольных Х тем самым вы покажете, что при любых Х знак функции Y не меняется, а следовательно функция f(х)= - четная
В решении.
Объяснение:
Постройте график функции y=x+3. По графику функции ответьте на вопросы:
а)чему равно значение y при x=1;
б)чему равно значение x при y=4.
Построить график. График линейной функции, прямая линия. Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
Таблица:
х -1 0 1
у 2 3 4
По вычисленным точкам построить прямую.
а) Согласно графика, при х = 1 у = 4;
б) Согласно графика, у = 4 при х = 1.