х ∈ (-∞;-1)∪(0,5;4)
Объяснение:
Метод интервалов(Этапы):
1) Решить уравнение f (x) = 0. Найти корни.
(х+1)(2х-1)(4-х)=0 х₁=-1; х₂=0,5; х₃=4
2)Отметить все полученные корни на координатной прямой. Таким образом, прямая разделится на четыре интервала:
(-∞;-1),(-1;0,5),(0,5;4),(4;+∞)
3)Выяснить знак (плюс или минус) функции f (x) на самом правом интервале. Для этого достаточно подставить в f (x) любое число, которое будет правее всех отмеченных корней;
f(10) = (10+1)(2*10-1)(4-10)=11*19*(-6) <0 - знак минус
4)Отметить знаки на остальных интервалах. Для этого достаточно запомнить, что при переходе через каждый корень знак меняется.
После этого останется лишь выписать интервалы, которые нас интересуют. Они отмечены знаком «+», т.к. неравенство имеет вид
f (x) > 0,
Радиус вписанной в многоугольник окружности равен отношению его площади к полупериметру
r=S:p, где р - полупериметр
Треугольник тоже многоугольник, и радиус вписанной в него окружности найдем по этой формуле.
Чтобы найти площадь треугольника, нужно знать его третью сторону, основание.
Высота известна, боковая сторона - тоже.
Высота делит равнобедренный треугольник на два равных прямоугольных, в которых боковая сторона - гипотенуза. высота и половина основания - катеты..
Найдем половину основания по т.Пифагора:
0,5а=√(225-144)=9 см
Основание равно 2*9=18 см
Площадь треугольника
S=ah:2=18*12:2=108 см²
полупериметр
р=(18+30):2=24
r=108:24=4,5 см
Треугольник равнобедренный. Для вписанной в равнобедренный треугольник окружности, когда известны все стороны и высота, можно вывести формулу:
r=0,5*bh:0,5(2a+b)
или произведение высоты на основание, деленное на периметр.
r=bh:Р
r=18*12:(30+18)=4,5
Отметьте лучшим решением и поставьте сердечко