1)Все жители не могут быть лгунами, иначе каждый из них сказал бы правду(противоречит условию).
2)Возьмем случайного рыцаря. Из утверждения вытекает, что лжецов на острове больше, чем (2015−1)\2=1007, то есть не менее 1007 лжецов.
3)Возьмем случайного лжеца. Его заявление ложно,т.к. кроме него не более половины жителей острова — лжецы. получается, что кроме него на острове не более 2014\2=1007 лжецов (то есть не более 1007), т.е. вместе с ним лжецов не более 1007.
4)из 2) и 3) следует, что: единственный вариант - это когда на острове ровно 1007 лжецов.
ax+c=bx+d a) x=7 5x+5=3x+19 Проверка: 5*7+5=3*7+19 35=35 (верно) б) Уравнение не имеет корней: 3х+7=3х-2 т.е. левая часть уравнения не должна равняться правой его части. Проверка: 3х+7=3х-2 3х-3х=-7-2 0х=-9 0≠-9 в) Уравнение имеет бесконечное множество решений. В этом случае коэффициенты при переменной х и свободные члены должны быть равны, соответственно. Пример: 8х+6=8х+6 или 34х-5=34х-5
1) 14x² - 5x - 1 = 0
(a = 14, b = -5, c = -1)
D = b² - 4ac
D = (-5)² - 4 • 14 • (-1) = 25 + 56 = 81 = 9²
D > 0, ⇒ уравнение имеет два действительных корня:
x₁,₂ = (-b ± √D)/2a
x₁ = (-(-5) + 9)/(2 • 14) = 14/28 = ½
x₂ = (-(-5) - 9)/(2 • 14) = -4/28 = -⅐
ответ: x₁ = ½, x₂ = -⅐
2) 2x² + x + 67 = 0
(a = 2, b = 1, c = 67)
D = b² - 4ac
D = 1² - 4 • 2 • 67 = 1 - 536 = -535
D < 0, ⇒ уравнение не имеет действительных корней
ответ: нет корней
3) 2p² + 7p - 30 = 0
(a = 2, b = 7, c = -30)
D = b² - 4ac
D = 7² - 4 • 2 • (-30) = 49 + 240 = 289 = 17²
D > 0, ⇒ уравнение имеет два действительных корня:
p₁,₂ = (-b ± √D)/2a
p₁ = (-7 + 17)/(2 • 2) = 10/4 = 5/2 = 2,5
p₂ = (-7 - 17)/(2 • 2) = -24/4 = -6
ответ: p₁ = 2,5, p₂ = -6