ответ:Объем тела, полученного вращением относительно оси абсцисс дуги кривой
y=f(x) , a<=x<=b, вычисляется по формуле
b
V = π ∫ (f(x))^2 dx
a
В данном случае
1
V1 = π ∫ (x^2+1)^2 dx =
0
1 1
= π ∫(x^4 + 2 * x^2 + 1) dx = π (x^5/5 + 2*x^3/3 + x) I =
0 0
= π (1/5 + 2/3 + 1) - 0 = 28 * π/15
4 4 4
V2 = π ∫ (Vx)^2 dx = π ∫ x dx = π * x^2/2 I = π * (4^2/2 -1^2/2) = 7,5 * π
пусть пешеход, вышедший из А, после встречи км. Тогда его скорость v1=S/t =
= 3x/2 км/час (40 мин = 2/3 час).
Пешеходу, вышедшему из В, после встречи пришлось пройти x + 2 км. Тогда его скорость
v2=S/t = 2(x+2)/3 км/час (1 час 30 мин = 3/2 час).
До встречи первый затратил время t = (x+2)/v1 = 2 * (x+2)/(3x).
До встречи второй затратил время t = x/v2 = 3 * x/(2(x+2)). Времена затраченные до встречи равны. Составляем уравнение.
(2x + 4)/3x = 3x/(2x+4)
(2x + 4)² = 9x²
либо 2x + 4 = 3x. x=4, либо
2x + 4 = -3x. x=-4/5 (не имеет смысла).
Искомое расстояние S = x + x + 2 = 4 + 4 + 2 = 10 км
ответ: х∈R
Объяснение:
1. Приравняем левую часть к нулю.
2. Решаем квадрантное уравнение. Дискриминант меньше нуля, значит методом интервалов решить неравенство не получится. Решаем графическим :
3. Левая часть - это квадратичная функция y= x^2+2x+3, график функции парабола, ветви которой направлены вверх ( т.к а>0).
4. Чертим ось Х. Т.к уравнение х^2 +2х + 3=0 не имеет корней, значит график не будет пересекать ось х. Он находится выше оси х ( при х=0, у=3)
5. Т.к график находится выше оси х, то какое бы число мы не подставили в функцию вместо х, у останется положительным. Следовательно для данного неравенства ответ такой: х∈R
(Второе фото: небольшая шпаргалка для решения квадратных неравенств)