М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Sveta7102006
Sveta7102006
15.03.2022 03:52 •  Алгебра

В ящику змішали 60 груш сорту Лісова красуня і 40 – сорту Бере Мліївська. Навмання відбирають 2 плоди. Знайти ймовірність настання наступних подій: а) обидві груші сорту Лісова красуня; б) обидві груші сорту Бере Мліївська; в) груші різних сортів. С объяснением!!

👇
Открыть все ответы
Ответ:

1) Орг. момент.

2) Актуализация опорных знаний.

Определение. Линейным уравнением с двумя переменными называется уравнение вида

mx + ny = k, где m, n, k – числа, x, y – переменные.

Пример: 5x+2y=10

Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

1. 5x+2y=12 (2)y = -2.5x+6

Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

Пусть x = 2, y = -2.5•2+6 = 1

x = 4, y = -2.5•4+6 =- 4

Пары чисел (2;1); (4;-4) – решения уравнения (1).

Данное уравнение имеет бесконечно много решений.

3) Историческая справка

Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

4) Изучение нового материала.

Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y  Z k0

Утверждение 1.

Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

Пример: 34x – 17y = 3.

НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно Утверждение 2.

Если m и n уравнения (1) взаимно числа, то это уравнение имеет по крайней мере одно решение.

Утверждение 3.

Если коэффициенты m и n уравнения (1) являются взаимно числами, то это уравнение имеет бесконечно много решений:

где (; ) – какое-либо решение уравнения (1), t Z

Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

m, n, x, y  Z

Утверждение 4.

Если m и n – взаимно числа, то всякое решение уравнения (2) имеет вид  

5) Домашнее задание. Решить уравнение в целых числах:

9x – 18y = 5

x + y= xy

Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?

Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

Урок 2.

1) Организационный момент

2) Проверка домашнего задания

1) 9x – 18y = 5

НОД (9;18)=9

5 не делится нацело на 9, в целых числах решений нет.

2) x + y= xy

Методом подбора можно найти решение

ответ: (0;0), (2;2)

4,8(38 оценок)
Ответ:
eeee1931
eeee1931
15.03.2022

значит так, скорость незнайки примем за х, скорость винтика тогда - 2х,

скорость тюбика примем за у, скорость шпунтика - 3у. Так как встретились они в одно время, и каждая пара проделала одинаковый путь, приравниваем сумму их скоростей: 

х+3у=у+2х

после решения уравнения получаем:

х=2у. подставляем его в скорость незнаяки и винтика:

скорость незнайки- 2у, 

скорость винтика - 4у, получается у нас такая примерно фигня:

                               Незнайка(2у) >              <Шпунтик(3у)

Цветочный город Солнечный город

                               Винтик(4у) >                   <Тюбик(у)

Совершенно очевидно, что встреча Шпунтика с незнайкой произошла ближе к цветочному городу, так как у Шпунтика скорость больше чем у Незнайки, а у Тюбика Меньше, чем у винтика.

4,5(94 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ