М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Uprava
Uprava
09.05.2021 16:31 •  Алгебра

2 группа: Коэффициент k Коэффициент b Геометрический вывод фунКЦИЯ y=3x+4 у= -3x-2

👇
Открыть все ответы
Ответ:
bioboy
bioboy
09.05.2021

1)\sqrt{x + 4} \\ x + 4 \geqslant 0 \\ x \geqslant - 4

x€[-4;+бесконечность)

2)\sqrt[4]{ - 9 + 2x} \\ - 9 + 2x \geqslant 0 \\ 2x \geqslant 9 \\ x \geqslant 4.5

х€[4,5 ; +бесконечность)

3)\sqrt[10]{5 {x}^{2} - 6x } \\ 5 {x}^{2} - 6x \geqslant 0 \\ x(5x - 6) \geqslant 0 \\ x = 0 \\ x = 1.2

х€(-бесконечность;0] объединение [1,2;+ бесконечность)

4) \sqrt[12]{8x - 4 {x}^{2} } \\ 8x - 4 {x}^{2} \geqslant 0 \\ 4x(2 - x) \geqslant 0 \\ x = 0 \\ x = 2

х€[0;2]

5) \sqrt[3]{x + 3} \\ x + 3 \geqslant 0 \\ x \geqslant - 3

область определения все вещественные числа.кроме тех ,при которых выражение не определено. в данном случае нет таких чисел при котором выражение было бы неопределённым

х€(-бесконечность;+бесконечность)

6) \sqrt[5]{x - 7} \\ x - 7 \geqslant 0 \\ x \geqslant 7

область определения все вещественные числа.кроме тех ,при которых выражение не определено. в данном случае нет таких чисел при котором выражение было бы неопределённым

х€(-бесконечность;+бесконечность)

7)\sqrt[7]{ {x}^{2} - 4 } \\ {x}^{2} - 4 \geqslant 0 \\ (x - 2)(x + 2) \geqslant 0 \\

область определения все вещественные числа.кроме тех ,при которых выражение не определено. в данном случае нет таких чисел при котором выражение было бы неопределённым

х€(-бесконечность;+бесконечность)

8)\sqrt[8]{2 {x}^{2} - 32} \\ 2 {x}^{2} - 32 \geqslant 0 \\ {x}^{2} - 16 \geqslant 0 \\ (x - 4)(x + 4) \geqslant 0

х€(-бесконечность;-4] и[4;+бесконечность)

4,7(71 оценок)
Ответ:
semchankov
semchankov
09.05.2021

Иван Сергеевич Шмелёв в своём рассказе «Христова всенощная»в качестве основного образа использует образ дороги.

Образ дороги в рассказе «Христова всенощная» многозначен:  конкретная дорога, исторический путь России, жизненные дороги беженцев из России, духовный путь каждого к Богу.

Описание всенощного богослужения вводит в художественный мир рассказа важный  мотив духовного пути, обретения дороги к Богу.

Проникновенное исполнение «чудесных молитв квартетом Н. Н. Кедрова создаёт ощущение явления Христа русским беженцам: «Он – здесь, в этой комнате при дороге, – Храме: песнопение превратилось в Слово, в Бога Слово».

Трепетный образ богослужения подчеркнут неярким освещением, и улицы и дома, терпеливым ожиданием людей русского квартета из Парижа, за окном чёрный осенний вечер с дождём, а в доме вздрагивает тихий огонёк в лампаде.

Цитата: "Я люблю всенощную: она завершает день и утишает страсти. Придешь в церковь, станешь в полутемный уголок, – и тихие песнопения, в которых и грусть, и примирение, и усталь от дня сего, начинают баюкать душу. И чувствуешь, что за этой неспокойной, мелкой и подчас горькой жизнью творится иная, светлая, – Божья жизнь."

4,7(39 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ