- время, за которое разгружает машину первый грузчик, мин; - время, за которое разгружает машину второй грузчик, мин; - время, за которое разгружают машину оба грузчика, мин; a=-1 - старший коэффициент при x^2; b=28 - второй коэффициент при x; c=-96 - свободный член. График функции - парабола с ветвями вниз, так как значение "a" при старшем коэффициенте x^2 меньше нуля. Вычислим дискриминант: Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
Вспомним уравнение: Здесь в знаменателе первой дроби время работы первого грузчика записано как x-12. Подставив поочередно корни квадратного уравнения в выражение x-12 можем сразу сделать вывод, что первый корень не подходит, так как время не может быть отрицательным. Следовательно ответ 24.
Двузначное число обозначим как 10n+a, где n - число десятков, а - число единиц. При этом 1≤n≤9, 1≤a≤9, n∈Z, a∈Z, Z - множество целых чисел. По условию задачи запишем уравнение 10n+a=2na 10n=2na-a 10n=a(2n-1) a=10n/(2n-1) При n=1 а=10*1/(2*1-1)=10>9 При n=2 a=10*2/(2*2-1)∉Z При n=3 a=10*3/(2*3-1)=6. Двузначное число - 10*3+6=36 При n=4 a=10*4/(2*4-1)∉Z При n=5 a=10*5/(2*5-1)∉Z При n=6 a=10*6/(2*6-1)∉Z При n=7 a=10*7/(2*7-1)∉Z При n=8 a=10*8/(2*8-1)∉Z При n=9 a=10*9/(2*9-1)∉Z Таким образом, существует только одно двузначное число, которое в 2 раза больше произведения своих цифр - 36. Произведение его цифр - 3*6=18, 36/18=2.
Объяснение:
условие = 6-10+6 = 2
фотомас для кого?