Площадь s прямоугольника равна произведению его сторон a и b a) как найти сторону прямоугольника,зная его площадь и другую сторону? б) как найти площадь квадрата,зная его сторону?
Для решения данной задачи нужно умножить количество выпускников на процент медалистов.
1. Сначала выразим процент в виде десятичной дроби:
1,8% = 1,8 / 100 = 0,018.
2. Затем умножим количество выпускников на эту десятичную дробь:
421 * 0,018 = 7,578.
3. Ответ будет округлен до целого числа, так как мы говорим о количестве медалистов. Если результат имеет дробную часть больше или равную 0,5, мы округляем его до ближайшего большего целого числа, в противном случае округляем до ближайшего меньшего целого числа.
7,578 округляем до 8.
Итак, в году в школах этого города было примерно 8 медалистов.
Натуральные числа - это положительные целые числа, начинающиеся с 1 и продолжающиеся до бесконечности.
В данном случае, мы ищем натуральные числа, которые не меньше 7,9 и не больше 12,1.
Чтобы найти эти числа, мы можем использовать неравенства.
Неравенства:
7,9 ≤ x ≤ 12,1
Однако, натуральные числа являются целыми, поэтому мы можем выразить данное неравенство в целых числах.
Для этого, давайте округлим 7,9 и 12,1 до ближайших целых чисел:
7,9 округляем до 8
12,1 округляем до 12
Теперь у нас есть новое неравенство:
8 ≤ x ≤ 12
Это означает, что натуральные числа, которые не меньше 7,9 и не больше 12,1, равны или больше 8 и меньше или равны 12.
Поэтому ответом на данный вопрос являются числа 8, 9, 10, 11 и 12.
Мы можем проверить это, подставив каждое из этих чисел обратно в исходное неравенство:
7,9 ≤ 8 ≤ 12,1 - верно
7,9 ≤ 9 ≤ 12,1 - верно
7,9 ≤ 10 ≤ 12,1 - верно
7,9 ≤ 11 ≤ 12,1 - верно
7,9 ≤ 12 ≤ 12,1 - верно
Таким образом, все эти числа удовлетворяют условию.
Надеюсь, данное объяснение помогло тебе понять, как найти натуральные числа, которые не меньше 7,9 и не больше 12,1. Если у тебя возникли еще вопросы, не стесняйся задавать их!
а) площадь разделить на сторону;
б) сторону квадрата возвести в квадрат