М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kotvo4cah
Kotvo4cah
20.10.2020 07:22 •  Алгебра

Пересекаются ли графики функций у=3х-1 и у=х+5 ?

👇
Ответ:
Dasha6200411
Dasha6200411
20.10.2020
Да, графики функций пересекаются в т.А(3;8).
Пересекаются ли графики функций у=3х-1 и у=х+5 ?
4,6(46 оценок)
Открыть все ответы
Ответ:
Урлатоп
Урлатоп
20.10.2020

ответ:Извиняюсь что не в том порядке

Объяснение:

б) Используя cos (t)² = 1-sin (t)² запишем выражение в развёрнутом виде

1-sin (a)²/sin (a)+1

Использу а²-b²=(a-b)(a+b) разложим на множители выражение

(1-sin (a))*(1+sin(a))/sin(a)+1

Дальше мы можем сократить дробь на sin(a)+1

отсюда 1-sin(a)

a) Упростим выражение Sin^2 a/(1 + cos a).  

Известно, что sin^2 a + cos^2 a = 1, тогда sin^2 a = 1 - cos^2 a. Подставим вместо sin^2 a выражение 1 - cos^2 a, тогда:  

Sin^2 a/(1 + cos a) = (1 - cos^2 a)/(1 + cos a);  

разложим числитель дроби на множители, используя формулу сокращенного умножения разности квадратов и получим:  

(1^2 - cos^2 a)/(1 + cos a) = (1 - cos a) * (1 + cos a)/(1 + cos a);  

Числитель и знаменатель дроби сокращаем на (1 + cos a) и тогда останется:  

(1 - cos a) * 1/1 = 1 - cos a;  

Значит, sin^2 a/(1 + cos a) = 1 - cos a.        

4,7(57 оценок)
Ответ:

Відповідь:

Еще недавно, учась сложению чисел, мы складывали кучки из монет. Тогда перед нами стояла задачи сложить две кучки. Но допустим, мы хотим теперь сложить не две, а несколько кучек. Это можно было бы сделать так: сгребаем их все сразу в одну большую кучу и пересчитываем в ней все монеты. Такой сложения всем бы был хорош, да только ни на счетах, ни на бумаге нельзя сделать ничего подобного. На счетах и бумаге мы умеем складывать между собой только два числа. Поэтому мы не будем сгребать вместе сразу все кучки, а поступим так, чтобы все наши действия можно было легко перенести на бумагу.

Итак, перед нами несколько кучек из монет. Мы знаем, сколько монет в каждой кучке, и теперь мы хотим узнать, сколько же у нас всего монет во всех кучках. Мы берем любые две кучки и сдвигаем их вместе, образуя одну новую кучку побольше. Умея складывать два числа на бумаге, мы сможем легко вычислить, сколько у нас монет в новой кучке без фактического их пересчета. Теперь у нас стало на одну кучку меньше. Далее, берем еще две кучки, сливаем их воедино, вычисляем новое число монет в только что образованной кучке и, таким образом, снова уменьшаем количество кучек на одну. Мы повторяем и повторяем эту процедуру, уменьшая всякий раз число кучек на единицу, до тех пор пока у нас не останется одна-единственная большая куча. Число монет в этой куче нам известно, причем вычислили мы его на бумаге, а не прямым пересчетом.

Очевидно, мы получим один и тот же ответ, совершенно независимо от того, в каком порядке мы сдвигали кучки. А значит, когда перед нами находится сумма чисел, например,

8 + 9 + 2,  мы можем вычислять ее тоже в любом порядке. Поэтому мы всегда будем выбирать такой порядок, какой для нас наиболее удобен. В данном случае удобно вначале сложить восьмерку и двойку, а потом добавить девятку:

8 + 2 + 9 = 10 + 9 = 19.

4,6(61 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ