ответ:1
Определить промежутки монотонности функции, не используя производную функции.
y = (x² - x - 20)² - 18
=================================
Область определения функции D (y) = R
y = (x² - x - 20)² - 18
Квадратичная функция в квадратичной функции
y = f(z); z = g(x)
Чтобы найти промежутки монотонности квадратичной функции, нужно найти абсциссу вершины параболы.
- координата вершины
z = 0 - координата вершины параболы
x₁ = -4; x₂ = 5 - координаты вершин параболы
Таким образом, есть три точки, которые определяют промежутки монотонности функции y = (x² - x - 20)² - 18.
x₁ = -4; x₀ = 0,5; x₂ = 5
x ∈ (-∞; -4] - функция убывает : y(-5) > y(-4)
x ∈ [-4; 0,5] - функция возрастает : y(-4) < y(0)
x ∈ [0,5; 5] - функция убывает : y(1) > y(2)
x ∈ [5; +∞) - функция возрастает : y(5) < y(6)
До обеда:
Объем работы 200 кустов
Производительность труда х кустов/час
Время работы ( 200/х ) часов
После обеда :
Объем работы 90 кустов
Производительность (х -20) кустов/час
Время работы 90/(х - 20) часов.
Зная, что на всю работу потрачено 7 часов, составим уравнение:
200/х + 90/(х -20) = 7
знаменатель не должен быть равен 0 :
х≠ 0 ; х≠ 20
избавимся от знаменателей, умножим обе части уравнения на х(х-20):
200(х-20) + 90х = 7х(х-20)
200х - 4000 + 90х = 7х² - 140х
290х - 4000 = 7х² - 140х
7х² - 140х - 290х + 4000 = 0
7х² - 430х + 4000 = 0
D = ( - 430)² - 4*7*4000 = 184900 - 112000 = 72900 = 270²
D>0
x₁ = ( - (-430) - 270)/(2*7) = (430 - 270)/14 = 160/14 = 80/7 = 11 ³/₇ не удовл. условию задачи ( т.к. < 20 )
х₂ = ( - (-430) +270)/(2*7) = (430 + 270)/14 = 700/14 = 50 (кустов/час)
Проверим:
200/50 + 90/(50 - 20) = 4 + 3 = 7 (часов)
ответ: по 50 кустов в час высаживала Валентина до обеда.
Вроде так. ( это у меня было написано в заметках, потому что мы тоже писали эту задачу, вот я и скопировала и вставила сюда).
Объяснение:
(√20 + √5) /√45 =(√4·5 +√5)/√9·5 =(2√5+√5)/3√5 -3√5/3√5 =1.