Пусть для определенности в каждом сосуде было по 1 л раствора, в котором x л кислоты. Тогда в 1 сосуде после 1 переливания будет
x*(1 - m)/1 л кислоты. А после 2 переливания будет
x*(1 - m)^2 л кислоты.
Точно также во 2 сосуде после 2 переливания будет
x*(1 - 2m)^2 л кислоты.
И по условию эти объемы относятся друг к другу как 26/16 = 13/8.
x*(1 - m)^2 : [x*(1 - 2m)^2] = 13/8
(1 - m)^2 : (1 - 2m)^2 = 13/8
8(1 - m)^2 = 13(1 - 2m)^2
После раскрытия квадратов получаем:
8m^2 - 16m + 8 = 52m^2 - 52m + 13
44m^2 - 36m + 5 = 0
D/4 = 18^2 - 44*5 = 324 - 220 = 104
m1 = (18 - √104)/44 ~ 0,1773; m2 = (18 + √104)/44 ~ 0,6408
Но во 2 случае объем 2m = 1,2816 > 1 л, поэтому не подходит.
ответ: 0,1773 часть объема раствора
Но мне кажется, что в задаче ошибка, должно быть 25/16.
Тогда решение намного проще.
(1 - m)^2 : (1 - 2m)^2 = 25/16
(1 - m) : (1 - 2m) = 5/4
4(1 - m) = 5(1 - 2m)
4 - 4m = 5 - 10m
6m = 1
m = 1/6 часть объема раствора
Решаем неравенство методом интервалов.
Находим нули функции у=(x+2)(x-1)(3x-7)
(x+2)(x-1)(3x-7)=0
Произведение нескольких множителей равно нулю, когда хотя бы один из них равен нулю.
х+2 = 0 или х - 1 = 0 или 3х - 7 = 0
х=-2 или х=1 или х=2 целых 1/3
Отмечаем точки на числовой прямой заполненным кружком (здесь это квадратные скобки) и расставляем знаки : - + - +
при х = -10 получаем (-10+2)(-10-1)(-30-7) <0
_ + _ +
[-2][1][2целых1/3]
поэтому на интервале, содержащем точку (-10),знак минус, далее знаки чередуем.
ответ: (−∞;−2]∪[1; 2 целых 1/3]