300 л в минуту или 300·60=18 000 л в час наполняет 1 труба
Пусть вторая наполняет х л в час,третья у л в час.
Пусть сначала первая труба проработала t часов, а вторая и третья вместе в два раза больше, т.е 2 t часов 18 000·t + 2t·(x+y)=500 000 12,5(x+y)=18 000t
Выражаем (х+у) из второго уравнения (x+y)=18 000·t/12,5 и подставляем в первое:
18 000 t + 2t·1 440t=500 00 или 36t²+225t-6250=0 a=36, b=225, c=-6250
D=b²-4ac=225²+4·36·6250=950625=975² t₁=(-225-975)/2<0 t₂=(-225+975)/72=750/72=10 целых 30/72 часа= =10 целых 5/12= 10 целых 25/60=10 часов 25 минут
По теореме Виета сумма корней приведенного квадратного уравнения равна второму коэффициенту с противоположным знаком, а произведение корней = свободному члену, Значит, х1 + х2 = а-2, х1*х2=-а-3. Обе части первого равенства возведем в квадрат и вместо х1*х2 подставим -а-3. Получим уравнение -2а-6=а^ -4а+4, откуда =а^-2а+10. Рассмотрим функцию у= а^-2а+10, график - парабола, ветви вверх, наименьшее значение в вершине( х= -в/2а), отсюда а= 2/2 =1. ( Если изучили производную, то наименьшее значение функции у= а^-2а+10 найдем через производную у. У'= 2а-2, у'=0 при а=1. А=1 - точка минимума.) ответ: при а=1.