Возьмем за x- скорость 2 туриста. Тогда скорость первого будет x+2. Напишем время, за которое они добрались. время первого 40/(х+2) время второго 40/х Из условия ясно, что первый доехал быстрее, чем второй, значит мы можем записать уравнение:
- = 1 приводим к общему знаменателю:
= 1 Заметим, что x не равен 0, икс не равен -2. По свойству пропорций мы приходим к такому уравнению: 80=x^2+2x x^2+2x-80=0 По формуле четного корня находим дискриминант: D=p^2-ac=1+80=81; Корень из D=9 x1=-1-9=-10 (скорость не может быть отрицательной, поэтому посторонний корень) x2=-1+9=8 Итак, скорость второго туриста 8+2=10. ответ: скорость первого туриста 10 км/ч; скорость второго туриста 8км/ч
1) R=(5 корень из 3 * корень из 3) и все разделить на 3 =15/3=5 см S=пи * r в квадрате=25 см в квадрате. Длина окружности равна 2 пи*r=10пи см. 2) Длина круга l=2*пи*r, а его градусная мера 360, т.к. тут гралусная мера 120, то длина дуги I=(120/360)*пи *r=3,14*4/3=4,19(см) По такому же принципу, равна (120/360) площади окружности S=1/3*пи*r в квадрате=1/3*3,14*4в квадрате=16,75(см в квадрате) 3) 1) сторона треугольника =6 корней из 3/3=2 корня из 3 2) R=(2* корень из 3)/ корень из 3=2 3) 4/корень из 3-сторона шестиугольника 4) Периметр шестиугольника=24 корень из 3/3=8 корень из 3
Напишем время, за которое они добрались.
время первого 40/(х+2)
время второго 40/х
Из условия ясно, что первый доехал быстрее, чем второй, значит мы можем записать уравнение:
приводим к общему знаменателю:
Заметим, что x не равен 0, икс не равен -2.
По свойству пропорций мы приходим к такому уравнению:
80=x^2+2x
x^2+2x-80=0
По формуле четного корня находим дискриминант:
D=p^2-ac=1+80=81; Корень из D=9
x1=-1-9=-10 (скорость не может быть отрицательной, поэтому посторонний корень)
x2=-1+9=8
Итак, скорость второго туриста 8+2=10.
ответ: скорость первого туриста 10 км/ч; скорость второго туриста 8км/ч