Функция задана формулой у = -2х + 1 Определить: а) значение у, если х=0,5; -1; 3 б) значение х, при котором у=2; 3 в) проходит ли график функции через точку А(-3; 7)?
где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.
Полностью задача звучит так: Годинник Андрія відстає на 10 хвилин,але він вважає,що годинник поспішає на 5 хвилин.Годинник Михайла поспішає на 5 хвилин,але він вважає, що годинник відстає на 10 хвилин. Хлопці одночасно дивляться на свої годинники.Андрій думає,що зараз 12:00.Котра зараз година на думку Михайла?А:11:30 Б:11:45 В:12:00 Г:12:30 Д:12:45
РЕШЕНИЕ: Разница между мнением Андрея и реальным временем = 5+10 = 15 минут Разница между мнением Михаила и реальным временем = 10+5 = 15 минут. Реальное время = мнение Андрея + разница Андрея + разница Михаила = 12:00 + 15 + 15 = 12:30
Объяснение:
Решение квадратного неравенства
Неравенство вида
где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.