Всё решается очень просто. Применяется теорема Виета для первого уравнения (это есть в любом учебнике математики)
х(квадрат)+5х-7=0
х1*х2=-7
х1+х2=-5
Если надо составить уравнение с корнями 1/х1 и 1/х2, то надо сделать несколько преобразований:
Если х1*х2=-7, то применяя теорему Виета уже для второго уравнения, получаем, что (1/х1)*(1/х2)=-1/7
Тоже самое если сложить два корня:
(1/х1)+(1/х2)=(х1+х2)/(х1*х2)=-5/(-7)=5/7
Значит уравнение вот такое a^2-(5/7)a-(1/7)=0
Можно последнее уравнение умножить на 7, чтобы были целые коэффиценты.
Вот и всё решение.
y = x² + 2x - 8
y = x² + 2x + 1 - 9 = (x + 1)² - 9
Видим, что график смещён вниз на 9 единиц и влево на 1 единицу. Соответственно, вершина данного графика будет с координатами: (-1; -9).
Найдём точки пересечения с осью OX, решив уравнение: x² + 2x - 8 = 0.
По т-ме Виета корни: -4; 2. То есть, график пересекает ось ОХ в точках (-4; 0) и (2; 0).
График также проходит через точку (0; -8) - это характерная точка (то есть, если подставить 0 вместо х, мы получим лишь свободный член, это -8).
Ось симметрии: x = -1.
Строим график по полученным точкам.