Для выделения полного квадрата суммы в выражении не хватает квадрата второго числа. Судя по удвоенному произведению первого числа на второе 14х, второе число равно 7, а квадрат его=49.
2x²-4х+b=0 Это решается по дискриминанту вот формула D = b² - 4ac где а - это то число где x² где b - это то число где x где c - это то число где нет x Подставляем значения под формулу D = 4² - 4 * 2 * b = 16 - 8b = 8b дальше находим x1 и x2 по формуле х1= -b + квадратный корень из дискриминанта делим на 2а х2= -b - квадратный корень из дискриминанта делим на 2а Так же : если дискриминант отрицательный то корней нет если дискриминант равен нулю то корень только один если дискриминант больше нуля то уравнение имеет два корня
В решении.
Объяснение:
Для квадратного трехчлена x² + 14x + 13 = 0
a) выделите полный квадрат .
Для выделения полного квадрата суммы в выражении не хватает квадрата второго числа. Судя по удвоенному произведению первого числа на второе 14х, второе число равно 7, а квадрат его=49.
(х² + 14х + 49) - 49 + 13 = 0
49 добавили, 49 и отнять.
Свернуть квадрат суммы:
(х + 7)² - 36 = 0.
b) разложите квадратный трехчлен на множители.
Найти корни уравнения:
(х + 7)² - 36 = 0
(х + 7)² = 36
Извлечь корень из обеих частей уравнения:
х + 7 = ±√36
х + 7 = ±6
х₁ = 6 - 7
х₁ = -1;
х₂ = -6 - 7
х₂ = -13.
Разложение:
x² + 14x + 13 = (х + 1)*(х + 13).